Nucleon Matrix Elements with $N_f = 2 + 1 + 1$ Maximally Twisted Fermions

Simon Dinter NIC, DESY Zeuthen

in collaboration with C. Alexandrou, M. Constantinou, V. Drach, K. Jansen, D. Renner

Lattice 2010, Villasimius, Sardinia, Italy June 14, 2010

Motivation Moments of parton distributions $N_F = 2 + 1 + 1$ twisted mass fermions Non-perturbative renormalization

Motivation

- ETMC: successful research program for $N_f = 2$:
 - 4 lattice spacings 0.051 fm $\leq a \leq$ 0.1 fm
 - $m_\pi\gtrsim 280~{
 m MeV}$
 - $m_{\pi}L > 3.5$
- Research project: $\langle x \rangle_{u-d}$, benchmark for lattice calculation

Plan of ETMC: go down to $m_{\pi} = 160$ MeV with a minimal lattice spacing of $a \approx 0.06$ fm in the $N_f = 2 + 1 + 1$ runs

- realistic physical setup
- including charm natural for twisted mass
- $N_f = 4$ runs started for renormalization

First calculation of $\langle x \rangle_{u-d}$ for 2 + 1 + 1

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Moments of parton distributions $N_F = 2 + 1 + 1$ twisted mass fermions Non-perturbative renormalization

First moment of parton distribution function (PDF) $q(x, \mu^2)$:

$$\langle x \rangle_{q,\mu^2} = \int_{-1}^{1} dx \; xq(x,\mu^2) = \int_{0}^{1} dx \; x \left\{ q(x,\mu^2) + \overline{q}(x,\mu^2) \right\}$$

Moments of PDFs related to local operators \Rightarrow calculable on the lattice

We concentrate on $\langle x \rangle_{u-d}$

$$\langle p, s | \underbrace{\overline{q} \gamma^{\langle \mu} i D^{\nu \rangle} \tau^{3} q}_{O^{\mu \nu}} | p, s \rangle \Big|_{\mu^{2}} = 2 \langle x \rangle_{u-d,\mu^{2}} p^{\langle \mu} p^{\nu \rangle}$$

On the lattice:

- 3-point functions of nucleon with O_{μν} calculated with sequential method
- source-sink separation gives rise to systematic error

Motivation Moments of parton distributions $N_F = 2 + 1 + 1$ twisted mass fermions Non-perturbative renormalization

$N_f = 2 + 1 + 1$ twisted mass fermions

- dynamical up, down, strange and charm
- fermionic action

$$S_{tm}^{I} = a^{4} \sum_{x} \bar{\chi}_{I}(x) [D_{W}[U] + m_{0} + i\gamma_{5}\tau_{3}\mu_{I}]\chi_{I}(x)$$

$$S_{tm}^{h} = a^{4} \sum_{x} \bar{\chi}_{h}(x) [D_{W}[U] + m_{0} + i\gamma_{5}\tau_{1}\mu_{\sigma} + \mu_{\delta}\tau_{3}]\chi_{h}(x)$$

strange and charm masses

$$\begin{aligned} \left(m_{s} \right)_{\mathsf{R}} &= Z_{\mathsf{PS}}^{-1} \left(\mu_{\sigma} - Z_{\mathsf{PS}} / Z_{\mathsf{S}} \, \mu_{\delta} \right), \\ \left(m_{c} \right)_{\mathsf{R}} &= Z_{\mathsf{PS}}^{-1} \left(\mu_{\sigma} + Z_{\mathsf{PS}} / Z_{\mathsf{S}} \, \mu_{\delta} \right) \end{aligned}$$

- automatic 𝒪(a) improvement of physical observables [Frezzotti, Rossi, 2003]
- no operator improvement necessary for $\langle x \rangle_{u-d}$
- for more details → talk by G. Herdoiza

Motivation Moments of parton distributions $N_F = 2 + 1 + 1$ twisted mass fermions Non-perturbative renormalization

Scaling behaviour

Motivation Moments of parton distributions $N_F = 2 + 1 + 1$ twisted mass fermions Non-perturbative renormalization

Renormalization

- want massless scheme \Rightarrow need $N_f = 4$ simulations
- calculation started for biliniears, not yet available for $\langle x \rangle$
- temporary solution: use $N_f = 2 + 1 + 1$ configurations
- momentum source method \rightarrow talk by M. Constantinou
- calculated in RI-MOM scheme at $\mu = 2$ GeV, matched to $\overline{\text{MS}}$
- practically no light sea quark mass dependence observed, but so far only a few masses
- repeat calculation with $N_f = 4$
- for $\langle x \rangle_{\mu-d}$: $Z_{O_{44}}^{\beta=1.95}(\mu = 2 \text{ GeV}) = 1.073(34)$ (preliminary)

・ロト ・ 同ト ・ ヨト ・ ヨト

Lattice details

2 + 1 + 1 dynamical flavor configurations from ETM collaboration \rightarrow talk by S. Reker one lattice spacing: $a \approx 0.078$ fm pion masses from 320 MeV to 490 MeV, $m_{\pi}L > 4$

Contractions performed with parallel contraction code "ahmidas" A. Deuzemann, S. Reker, SD \rightarrow http://code.google.com/p/ahmidas

Results

 $N_f = 2$ and $N_f = 2 + 1 + 1$ results for $\langle x \rangle_{u-d}$

Summary and Prospects

- first calculation of $\langle x \rangle_{u-d}$ with 2 + 1 + 1 dynamical flavours
- non-perturbative Z-factor
- agreement with $N_f = 2$ data
- future goals:
 - second lattice spacing (a ≈ 0.06 fm)
 → reach physical point
 - more observables: g_A , higher derivatives, form factors
 - test of a new method