Rho decay from twisted mass fermions

Xu Feng

NIC, DESY / University of Münster
in collaboration with Karl Jansen and Dru B. Renner on behalf of ETMC

June 15, 2010

Start from experiment

- ρ resonance appears in cross section $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)$

[Achasov, 06]
- $m_{\rho}: \sigma$ reaches its maximal; $\Gamma_{\rho}: \sigma$ drops to half its peak
- Lüscher's finite size methods $\Rightarrow \pi \pi$ scattering phase $\delta(p)$

$$
\left.\delta(p)\right|_{E=m_{\rho}}=\frac{\pi}{2} \quad \text { or }\left.\quad \delta(p)\right|_{E=m_{\rho} \pm \Gamma_{\rho} / 2}=\frac{\pi}{4}
$$

Lattice details

- maximally twisted mass fermions
- automatically $O(a)$ improved
- isospin and parity symmetry breaking
- ensemble information

$a(f m)$	L / a	$m_{\pi^{+}}(\mathrm{MeV})$					
0.079	24	420					480
0.079	32	290	330				
0.063	32		320				

- $m_{\pi^{+}}: 290-480 \mathrm{MeV} \Rightarrow$ pion mass dependence
- $m_{\pi^{+}} / m_{\rho^{0}}: 0.30-0.43 \Rightarrow$ threshold is open for $\rho^{0} \rightarrow \pi^{+} \pi^{-}$
- two lattice spacings \Rightarrow check for lattice artifacts

Requirement for large L

- in the free case: $\vec{p}=(2 \pi / L) \vec{n}$

$$
E=2 \sqrt{m_{\pi}^{2}+p^{2}}
$$

- elastic scattering region: $2 m_{\pi}<E<4 m_{\pi}$
- close to resonance peak: $E \simeq m_{\rho}$

$$
\frac{2 \pi}{L}=p \simeq \sqrt{m_{\rho}^{2} / 4-m_{\pi}^{2}}
$$

- small p requires large lattice size L
- large phyiscal volume \Rightarrow large computer resources

Moving frame method

- center-of-mass frame (CMF), e.g.

$$
\vec{p}_{1}=-\vec{p}_{2}=(2 \pi / L) \vec{e}_{3}
$$

- moving frame (MF) [Rummukainen \& Gottlieb, 95], e.g.

$$
\vec{p}_{1}=(2 \pi / L) \vec{e}_{3}, \quad \vec{p}_{2}=\overrightarrow{0}
$$

Lorentz boost to the CMF

$$
\vec{p}_{1}^{*}=-\vec{p}_{2}^{*}=(2 \pi / L) \vec{e}_{3} /(2 \gamma) \quad \Rightarrow \quad L^{*}=L(2 \gamma)
$$

smaller p^{*}, or equivalently larger L^{*} is available

- a second MF is employed

$$
\vec{p}_{1}=(2 \pi / L)\left(\vec{e}_{1}+\vec{e}_{2}\right), \quad \vec{p}_{2}=\overrightarrow{0}
$$

three Lorentz frames \Rightarrow probe resonance region

Energy of pion-pion system

- correlation matrix to isolate ground and 1st excited state:

$$
C(t)=\frac{1}{T} \sum_{t_{s}=0}^{T-1}\left(\begin{array}{cc}
\left\langle(\pi \pi)\left(t+t_{s}\right)(\pi \pi)^{\dagger}\left(t_{s}\right)\right\rangle & \left\langle(\pi \pi)\left(t+t_{s}\right) \rho^{\dagger}\left(t_{s}\right)\right\rangle \\
\left\langle\rho\left(t+t_{s}\right)(\pi \pi)^{\dagger}\left(t_{s}\right)\right\rangle & \left\langle\rho\left(t+t_{s}\right) \rho^{\dagger}\left(t_{s}\right)\right\rangle
\end{array}\right)
$$

- place Z_{4} stochastic sources on all the time slice
- collect ground state and 1st excited state in three frames 2×3 energy levels \Rightarrow scattering phase δ

Energy dependence of δ

- effective range formula

$$
\tan \delta(p)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E_{C M}\left(m_{\rho}^{2}-E_{C M}^{2}\right)}, \quad p=\sqrt{E_{C M}^{2} / 4-m_{\pi}^{2}}
$$

- determine resonance mass m_{ρ} and coupling constant $g_{\rho \pi \pi}$ π^{+}

- decay width is largely determined by $g_{\rho \pi \pi}$:

$$
\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{m_{\rho}^{2}}, \quad p=\sqrt{m_{\rho}^{2} / 4-m_{\pi}^{2}}
$$

- $g_{\rho \pi \pi}$ is almost m_{π} independent?? [Hanhart et al, 08]
- one example of five: $m_{\pi^{+}}=330 \mathrm{MeV}, a=0.079 \mathrm{fm}, L / a=32$

- $m_{\rho}=1033(31) \mathrm{MeV}, g_{\rho \pi \pi}=6.31(87), \Gamma_{\rho}=123(43) \mathrm{MeV}$

Pion mass dependence

- $g_{\rho \pi \pi}$ as a function of m_{π}^{2}

- $g_{\rho \pi \pi}$ is almost independent of the pion mass

Pion mass dependence

- we follow EFT using complex mass renormalization [Djukanovic et al, 10]
- m_{ρ} and Γ_{ρ} are considered as the real and imaginary part of the complex pole Z of the ρ-meson propagator

$$
Z=\left(m_{\rho}-i \Gamma_{\rho} / 2\right)^{2}
$$

- study pion mass dependence of Z

$$
Z=Z_{\chi}+C_{\chi} M_{\pi}^{2}-\frac{1}{24 \pi} g_{\omega \rho \pi}^{2} Z_{\chi}^{1 / 2} M_{\pi}^{3}+O\left(M_{\pi}^{4} \ln \left(M_{\pi}^{2}\right)\right)
$$

Pion mass dependence

- large error in fit to $O\left(M_{\pi}^{3}\right)$; fit to higher order??
- need to explore rho decay at lighter m_{π}, say $m_{\pi}<300 \mathrm{MeV}$

Pion mass dependence

- statistically agree with PDG data
- however, error are relatively large
- we calculate $m_{\rho}, \Gamma_{\rho}, g_{\rho \pi \pi}$ from pion-pion scattering
- three Lorentz frames $\Rightarrow \delta$ at six different energy levels \Rightarrow map out the resonance region
- require to explore rho decay at lighter m_{π} region
- check lattice artifacts at two lattice spacings \Rightarrow no obvious effects are found
- this work is more of a conceptual nature to understand how resonances can be treated in LQCD

Backup slides

- $m_{\pi^{+}}=480 \mathrm{MeV}, a=0.079 \mathrm{fm}, L / a=24$

- $m_{\rho}=1118(14) \mathrm{MeV}, g_{\rho \pi \pi}=6.46(40), \Gamma_{\rho}=39.5(8.2) \mathrm{MeV}$

Backup slides

- $m_{\pi^{+}}=420 \mathrm{MeV}, a=0.079 \mathrm{fm}, L / a=24$

- $m_{\rho}=1047(15) \mathrm{MeV}, g_{\rho \pi \pi}=6.19(42), \Gamma_{\rho}=55(11) \mathrm{MeV}$

Backup slides

- $m_{\pi^{+}}=320 \mathrm{MeV}, a=0.063 \mathrm{fm}, L / a=32$

- $m_{\rho}=997(52) \mathrm{MeV}, g_{\rho \pi \pi}=7.3(1.1), \Gamma_{\rho}=158(68) \mathrm{MeV}$

Backup slides

- $m_{\pi^{+}}=290 \mathrm{MeV}, a=0.079 \mathrm{fm}, L / a=32$

- $m_{\rho}=980(31) \mathrm{MeV}, g_{\rho \pi \pi}=6.77(67), \Gamma_{R}=156(41) \mathrm{MeV}$

