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Introduction



Introduction

Goal: Study (Lattice) QCD at finite temperature and density

Svetitsky-Yaffe conjecture: (d + 1) dimensional SU(N)
thermal phase transition is described by an effective spin
model in d dimensions with short-ranged interactions

Possible approach: Strong coupling expansions; Leading order
effective action derived in [Polonyi, Szlachanyi 1981]

Since then: various generalizations, e.g. [Green, Karsch 1984],
[Ogilvie 1984], [Wipf et al. 2004, 2007], ...

Common simplification: Neglect of spatial plaquettes (Leading
correction for SU(2) computed in [Caselle et al. 1996])

Here: Explore what accuracy can be achieved by inclusion of
spatial plaquettes
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General strategy

Start with the partition function of (3+1) dimensional lattice
gauge field theory at finite temperature

Integrate out degrees of freedom in order to have an effective
action in terms of the order parameter (here: Polyakov loop)

−Seff = λ1S1 + λ2S2 + λ3S3 + . . .

Sn depend only on Polyakov loops

Find critical parameters λn,crit and relate back to critical
lattice couplings βcrit for different Nτ

−→ Crucial to know mappings λn(Nτ , β)
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Calculational details for SU(2)



SU(2) technical details

Partition function with Wilson’s gauge action

Z =

∫

[dU] exp

[

β

2

∑

p

tr Up

]

Split temporal and spatial link integration and use character
expansion (ar (β): expansion parameter of representation r)

Z =

∫

[dW ] exp







ln

∫

[dUi ]
∏

p



1 +
∑

r 6=0

drar (β)χr (Up)











≡

∫

[dW ] exp [−Seff ] W (~x) =

Nτ
∏

τ=1

U0(τ,~x)

Allows for a systematic strong coupling expansion of Seff
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Interlude: Spatial strong coupling limit

Neglect of spatial plaquettes:

Z =

∫

[dW ]
∑

〈ij〉

[

1 +
∑

r

aNτ

r χr (Wi )χr (Wj )

]

Exponential function disappears in this limit

Next-to-nearest-neighbour interactions are an effect that
depends on the inclusion of spatial plaquettes
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Leading order graph in case of Nτ = 4:

j
i

Figure: 4 plaquettes in fundamental representation lead to a 2
Polyakov loop interaction term

Integration of spatial link variables leads to

−S1 = uNτ

∑

〈ij〉

tr Wi tr Wj

u ≡ af (β): Faster convergence, relation analytically known

Possible generalizations: larger distance, higher dimensional
representations, larger number of loops involved, . . .

Here: Decorate LO graph with additional spatial and temporal
plaquettes
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Higher order graphs

Higher order graphs exponentiate (i.e. resumming graphs):

−→ −S1 = λ1(Nτ , u)
∑

〈ij〉

tr Wi tr Wj

λ1(Nτ , u) = uNτ exp

[

NτP(Nτ , u)

]

Polynomials P(Nτ , u) known up to O(u10): Crucial to relate
λ1 of effective spin model to β of full gauge theory

One determination of λ1,crit gives all βcrit(Nτ )
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Integration

Z(2) symmetric 3 dimensional partition function

Z =

∫

[dW ] exp



λ1

∑

〈ij〉

tr Wi tr Wj





Can be further simplified by using L ≡ tr W as degrees of
freedom: ordinary integration instead of group integration

Introduces potential term: VSU(2) = 1
2

∑

i ln
[

4 − L2
i

]

Z =

∫

[dL] exp



λ1

∑

〈ij〉

LiLj +
1

2

∑

i

ln
[

4 − L2
i

]




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Higher order interaction terms

Subclass of higher order interaction terms (Powers of the
leading order term) arrange schematically as

−Seff = λ1

(

LL
)

−
λ2

1

2

(

LL
)2

+
λ3

1

3

(

LL
)3

− . . . = ln
[

1 + λ1(LL)
]

SU(2) effective theory to be simulated

Z =

∫

[dL]
∏

i

√

4 − L2
i

∏

〈ij〉

[

1 + λ1LiLj

]

Critical coupling: λ1,crit = 0.2142(1)
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Results and comparison with Monte Carlo

Nτ βc (Seff ) βc(MC )

1 0.884 0.873

2 1.898 1.873

3 2.213 2.177

4 2.335 2.299

5 2.409 2.373

6 2.454 2.427

8 2.505 2.510

12 2.551 2.636

16 2.573 2.731

Good results up to Nτ = 8
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Systematic errors

Truncation of series expansion in u

Good approximation for small Nτ (i.e. small βcrit) as βcrit(Nτ )
increases with Nτ

No much room left to increase the strong coupling expansion
to higher orders

Neglect of higher order interactions terms

Good approximation for larger Nτ , since corrections come at
least with an additional power uNτ (and 0 ≤ u ≤ 1)
−→ Next task
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Next-to-nearest-neighbour interactions

Leading order graphs:

l

k

Investigate effect of L-shaped next-to-nearest neighbours:
Two-coupling theory with partition function

Z =

∫

[dL] exp
[

−S1 + VSU(2)

]

∏

[kl ]

[

1 + λ2LkLl

)]

λ2 = Nτ (Nτ − 1)u2Nτ+2
(

1 + O
(

u2
)

)

Straight next-to-nearest-neighbours are of O
(

u2Nτ+6
)

Jens Langelage

Effective Polyakov-loop theory for pure Yang-Mills from strong coupling expansion: analytical details



Generalization to SU(3)

SU(3) straightforward, but: Now also with anti-fundamental
representation (i.e. Li are complex)

Z =

∫

[dL] exp
[

−S1 + VSU(3)

]

=

∫

[dL]
∏

〈ij〉

[

1 + 2λ1Re

(

LiL
∗
j

)

]

∗

∗
∏

i

√

27 − 18|Li |2 + 8ReL3
i − |Li |4

Functional form of λ1(Nτ , u) and next-to-nearest-neighbour
effects are analogous to SU(2)
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Conclusion: Part I

Derived different effective spin models for finite temperature
lattice gauge theories

Computed up to 10 more orders in the strong coupling
expansion of effective theory couplings

Investigate the effect of spatial plaquettes and
next-to-nearest-neighbour couplings

See S. Lottini’s talk for numerical results and final conclusions
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Backup slides
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Character expansion

Expand plaquette action in terms of characters χr (Up)

exp

[

β

2
tr Up

]

= c0(β)



1 +
∑

r 6=0

drar (β)χr (Up)





Expansion parameter ar (β) are certain combinations of
modified Bessel functions for SU(N) gauge groups

In contrast to a direct exponentiation, each plaquette variable
is now only allowed to contribute once in a given
representation
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