Effective Polyakov-loop theory for pure Yang-Mills from strong coupling expansion: analytical details

> Jens Langelage Department of Physics University of Bielefeld

15.6.2010

in collaboration with Stefano Lottini and Owe Philipsen from University of Frankfurt (Main)

Jens Langelage

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

- Goal: Study (Lattice) QCD at finite temperature and density
- Svetitsky-Yaffe conjecture: (d + 1) dimensional SU(N) thermal phase transition is described by an effective spin model in d dimensions with short-ranged interactions
- Possible approach: Strong coupling expansions; Leading order effective action derived in [Polonyi, Szlachanyi 1981]
- Since then: various generalizations, e.g. [Green, Karsch 1984], [Ogilvie 1984], [Wipf et al. 2004, 2007], ...
- Common simplification: Neglect of spatial plaquettes (Leading correction for SU(2) computed in [Caselle et al. 1996])
- Here: Explore what accuracy can be achieved by inclusion of spatial plaquettes

・ロン ・四 ・ ・ ヨン ・ ヨン

3

- Start with the partition function of (3+1) dimensional lattice gauge field theory at finite temperature
- Integrate out degrees of freedom in order to have an effective action in terms of the order parameter (*here*: Polyakov loop)

$$-S_{eff} = \lambda_1 S_1 + \lambda_2 S_2 + \lambda_3 S_3 + \dots$$

- *S_n* depend only on Polyakov loops
- Find critical parameters $\lambda_{n,crit}$ and relate back to critical lattice couplings β_{crit} for different N_{τ}

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

 \longrightarrow Crucial to know mappings $\lambda_n(N_{\tau},\beta)$

Jens Langelage

Calculational details for SU(2)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

SU(2) technical details

Partition function with Wilson's gauge action

$$Z = \int \left[dU \right] \exp \left[\frac{\beta}{2} \sum_{\rho} \operatorname{tr} U_{\rho} \right]$$

Split temporal and spatial link integration and use character expansion (a_r(β): expansion parameter of representation r)

$$Z = \int [dW] \exp\left\{ \ln \int [dU_i] \prod_{p} \left[1 + \sum_{r \neq 0} d_r a_r(\beta) \chi_r(U_p) \right] \right\}$$
$$\equiv \int [dW] \exp\left[-S_{eff}\right] \qquad \qquad W(\vec{x}) = \prod_{\tau=1}^{N_\tau} U_0(\tau, \vec{x})$$

Allows for a systematic strong coupling expansion of S_{eff} , s_{eff} , s_{eff}

Jens Langelage

Interlude: Spatial strong coupling limit

Neglect of spatial plaquettes:

$$Z = \int [dW] \sum_{\langle ij \rangle} \left[1 + \sum_{r} a_{r}^{N_{\tau}} \chi_{r}(W_{i}) \chi_{r}(W_{j}) \right]$$

- Exponential function disappears in this limit
- Next-to-nearest-neighbour interactions are an effect that depends on the inclusion of spatial plaquettes

(日) (同) (三) (三)

э

Jens Langelage

• Leading order graph in case of $N_{\tau} = 4$:

Figure: 4 plaquettes in fundamental representation lead to a 2 Polyakov loop interaction term

Integration of spatial link variables leads to

$$-S_1 = u^{N_{\tau}} \sum_{\langle ij
angle} \operatorname{tr} W_i \operatorname{tr} W_j$$

• $u \equiv a_f(\beta)$: Faster convergence, relation analytically known

- Possible generalizations: larger distance, higher dimensional representations, larger number of loops involved, ...
- Here: Decorate LO graph with additional spatial and temporal plaquettes

Jens Langelage

Higher order graphs

Higher order graphs exponentiate (i.e. resumming graphs):

$$\longrightarrow -S_1 = \lambda_1(N_{\tau}, u) \sum_{\langle ij \rangle} \operatorname{tr} W_i \operatorname{tr} W_j$$
$$\lambda_1(N_{\tau}, u) = u^{N_{\tau}} \exp\left[N_{\tau} P(N_{\tau}, u)\right]$$

- Polynomials $P(N_{\tau}, u)$ known up to $\mathcal{O}(u^{10})$: Crucial to relate λ_1 of effective spin model to β of full gauge theory
- **One** determination of $\lambda_{1,crit}$ gives all $\beta_{crit}(N_{\tau})$

Jens Langelage

Integration

Z(2) symmetric 3 dimensional partition function

$$Z = \int [dW] \exp \left[\lambda_1 \sum_{\langle ij
angle} \operatorname{tr} W_i \operatorname{tr} W_j
ight]$$

■ Can be further simplified by using L ≡ tr W as degrees of freedom: ordinary integration instead of group integration

Introduces potential term: $V_{SU(2)} = \frac{1}{2} \sum_{i} \ln \left[4 - L_i^2\right]$

$$Z = \int [dL] \exp \left[\lambda_1 \sum_{\langle ij
angle} L_i L_j + rac{1}{2} \sum_i \ln \left[4 - L_i^2
ight]
ight]$$

<ロ> (日) (日) (日) (日) (日)

3

Jens Langelage

Higher order interaction terms

 Subclass of higher order interaction terms (Powers of the leading order term) arrange schematically as

$$-S_{eff} = \lambda_1 (LL) - \frac{\lambda_1^2}{2} (LL)^2 + \frac{\lambda_1^3}{3} (LL)^3 - \ldots = \ln \left[1 + \lambda_1 (LL) \right]$$

(日) (同) (三) (三)

э

SU(2) effective theory to be simulated

$$Z = \int \left[dL \right] \prod_{i} \sqrt{4 - L_{i}^{2}} \prod_{\langle ij \rangle} \left[1 + \lambda_{1} L_{i} L_{j} \right]$$

• Critical coupling: $\lambda_{1,crit} = 0.2142(1)$

Jens Langelage

Results and comparison with Monte Carlo

$N_{ au}$	$\beta_{c}(S_{eff})$	$\beta_{c}(MC)$
1	0.884	0.873
2	1.898	1.873
3	2.213	2.177
4	2.335	2.299
5	2.409	2.373
6	2.454	2.427
8	2.505	2.510
12	2.551	2.636
16	2.573	2.731

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

• Good results up to $N_{ au}=8$

Jens Langelage

Systematic errors

- Truncation of series expansion in u
 - Good approximation for small N_{τ} (i.e. small β_{crit}) as $\beta_{crit}(N_{\tau})$ increases with N_{τ}
 - No much room left to increase the strong coupling expansion to higher orders
- Neglect of higher order interactions terms
 - Good approximation for larger N_{\(\tau\)}, since corrections come at least with an additional power u^{N_{\(\tau\)}} (and 0 ≤ u ≤ 1)

・ロン ・四 ・ ・ ヨン ・ ヨン

3

 $\blacksquare \longrightarrow \mathsf{Next} \mathsf{ task}$

Jens Langelage

Next-to-nearest-neighbour interactions

Leading order graphs:

 Investigate effect of L-shaped next-to-nearest neighbours: Two-coupling theory with partition function

$$Z = \int [dL] \exp \left[-S_1 + V_{SU(2)}\right] \prod_{[kl]} \left[1 + \lambda_2 L_k L_l\right]$$
$$\lambda_2 = N_{\tau} (N_{\tau} - 1) u^{2N_{\tau} + 2} \left(1 + \mathcal{O}(u^2)\right)$$

Straight next-to-nearest-neighbours are of $\mathcal{O}(u^{2N_{\tau}+6})$

Jens Langelage

Generalization to SU(3)

4

 SU(3) straightforward, but: Now also with anti-fundamental representation (i.e. L_i are complex)

$$Z = \int [dL] \exp \left[-S_1 + V_{SU(3)}\right]$$

=
$$\int [dL] \prod_{\langle ij \rangle} \left[1 + 2\lambda_1 \operatorname{Re}\left(L_i L_j^*\right)\right] *$$
$$* \prod_i \sqrt{27 - 18|L_i|^2 + 8\operatorname{Re}L_i^3 - |L_i|^4}$$

Functional form of $\lambda_1(N_{\tau}, u)$ and next-to-nearest-neighbour effects are analogous to SU(2)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Jens Langelage

Conclusion: Part I

- Derived different effective spin models for finite temperature lattice gauge theories
- Computed up to 10 more orders in the strong coupling expansion of effective theory couplings
- Investigate the effect of spatial plaquettes and next-to-nearest-neighbour couplings
- See S. Lottini's talk for numerical results and final conclusions

3

Jens Langelage

Backup slides

Jens Langelage

Effective Polyakov-loop theory for pure Yang-Mills from strong coupling expansion: analytical details

<ロ> (日) (日) (日) (日) (日)

æ

Jens Langelage

Expand plaquette action in terms of characters $\chi_r(U_p)$

$$\exp\left[\frac{\beta}{2}\mathrm{tr}\,U_{\rho}\right] = c_0(\beta)\left[1 + \sum_{r\neq 0} d_r a_r(\beta)\chi_r(U_{\rho})\right]$$

- Expansion parameter a_r(β) are certain combinations of modified Bessel functions for SU(N) gauge groups
- In contrast to a direct exponentiation, each plaquette variable is now only allowed to contribute once in a given representation

э