Quantum entanglement and KPZ relations

F. Gliozzi

DFT \& INFN, Universitá di Torino
Lattice 2010, June 14-19

Foreword

* This talk is based on

嗇 M. Caraglio, FG, Entanglement Entropy and twist fields, JHEP 11(2008) 076 [arXiv:0808.4094].

围 FG, L. Tagliacozzo, Entanglement Entropy and the complex plane of replicas J. Stat. Mech. (2010) P01002 [arXiv:09103003].

- FG,2D quantum gravity from quantum entanglement, to appear
* it deals with a new approach to 2D quantum gravity based on quantum entanglement

Plan of the talk

1 Quantum entanglement

2 Replica approach

3 The back-reaction of the accessible subsystems

4 Numerical simulations

5 Colnclusions

Quantum entanglement

＊In extended quantum systems S with many degrees of freedom a complete description of the information available to an observer who has access to a subsystem A is the reduced density matrix ρ_{A} ．Principal ingredients：
＊＊$|\Psi\rangle=$ pure quantum state（e．g．the ground state）
＊来 S can be subdivided into two complementary subsystems A and B $S=A \cup B$
洮 the reduced density matrix is $\rho_{A}=\operatorname{tr}_{B}|\Psi\rangle\langle\Psi|$
湶 The von Neumann or Entanglement Entropy is

$$
S_{A} \equiv-\operatorname{tr} \rho_{A} \ln \rho_{A}=-\operatorname{tr} \rho_{B} \ln \rho_{B} \equiv S_{B}
$$

潾 Other useful probes of quantum entanglement are the Rényi entropies $R_{A}(n)=\log \operatorname{tr} \rho_{A}^{n} /(1-n)$ and the Tsallis entropies $T_{A}(n)=\left(\operatorname{tr} \rho_{A}^{n}-1\right) /(1-n)$
$\Rightarrow S_{A}=\lim _{n \rightarrow 1} R_{A}(n)=\lim _{n \rightarrow 1} T_{A}(n)$

Entanglement Entropy and Black Holes

* S_{A} is the entropy for an observer who is accessible only to the subsystem A and cannot receive any signals from B
$\Rightarrow B$ is analogous to the inside of a black hole

$$
S_{B H}=\frac{\text { area of horizon }}{4 G_{N}}
$$

* The entanglement (or geometric) entropy is deeply related to the physics of the black holes ('t Hooft 1984, Srednicki 1993, Callan \& Wilczek 1994, Ryu \& Takayanagi 2006)
* The entanglement entropy has been also extensively studied in low dimensional quantum systems as a new tool to investigate the nature of quantum criticality (1D quantum system=2D Euclidean system in the functional integral approach)
* In the following we consider a bipartite quantum spin chain in which the unobserved subsystem B is an arbitrary set of disjoint intervals
* $A=$ accessible subsystem,$B=$ inaccessible subsystem

Replica approach

* we may compute $\operatorname{tr} \rho_{A}^{n}$ by cutting the system along the unobserved subsystem B, making n copies of the system and sewing them together cyclically along the cut so that $\phi(x)_{k}=\phi(x)_{k+1}^{\prime} \quad x \in B$ ($\phi(x)$ and $\phi(x)^{\prime}$ fields evaluated in the lower and upper border of the cut)

$\Rightarrow \quad \operatorname{tr} \rho_{A}^{n}=\frac{Z_{n}(A)}{Z^{n}}$
$Z=$ partition function of the unperturbed system
$Z_{n}(A)=$ partition function of the system defined on the Riemann surface made with n sheets

[^0]
Lattice implementation

	-				
	k-1	k	k	k	k-1
	u		λ	v	
	${ }^{\text {k-1 }}$	k-	k-1	k-1	${ }^{\text {k-1 }}$
$\mathrm{k}-1 \bullet \bullet \bullet$ •					
$\mathrm{k} \bullet \bullet \bullet$ -					
$k+1 \bullet \bullet \bullet$ •					
$\bmod (\mathrm{n})$					

Action for the coupled system of n sheets

$$
S_{A}\left[\phi^{(1)}, \ldots, \phi^{(n)}\right]=\sum_{k=1}^{n} \sum_{\langle x y\rangle} S_{\langle x y\rangle}^{(k)}
$$

$$
S_{\langle x y\rangle}^{(k)}= \begin{cases}S\left[\phi_{x}^{(k)}, \phi_{y}^{(k+1)}\right] & x \in B \\ S\left[\phi_{x}^{(k)}, \phi_{y}^{(k)}\right] & x \notin B\end{cases}
$$

Partition function of the coupled system

$$
Z_{n}(A)=\int \prod_{k=1}^{n} \mathcal{D}\left[\phi_{k}\right] e^{-S_{A}\left[\phi^{(1)}, \ldots, \phi^{(n)}\right]}
$$

$\Longleftrightarrow \quad \operatorname{tr} \rho_{A}^{n}=\frac{Z_{n}(A)}{Z^{n}}$
\measuredangle we can then use this coupled system to study the quantum entanglement effects produced by the accessible system A

Back-reacting subsystems

* In all previous studies the accessible subsystem A is chosen to be fixed
* We treat instead A as a back-reacting, dynamical subsystem whose position, form and extension is determined by its interaction with the system.
* We implement it by "summing over all histories", i.e. by putting the system in equilibrium with the Gibbs ensemble $\{A\}$ of all the possible subsystems.
\leftrightarrows

$$
Z_{n}=\sum_{\{A\}} Z_{n}(A)
$$

\leadsto in numerical simulations the dynamical coupling to A is obtained in a straightforward way by updating it with a heat-bath method

* the only elements of A having an intrinsic geometrical -and physical- meaning are the end points of the cuts, i. e. the branch points of the Riemann surface.
* They correspond to conical singularities with deficit angle $2 \pi(n-1)$.
* the n-sheeted covering of the plane with N branch points is a Riemann surface of genus $g=(n-1)(N-2) / 2$
\triangleleft summing over all accessible subsystems corresponds, to a double sum over genera and moduli of these Riemann surfaces.
* This is the first indication that this issue is related to 2D quantum gravity.
* 1D critical quantum spin chain $\leftrightarrow 2 \mathrm{D}$ conformal field theory
\Rightarrow the dynamical effects of the back-reaction of the accessible subsystems A in a quantum spin chain are intimately related to a 2D CFT in thermal equilibrium with a gas of conical singularities
* Knizhnik (1987):

The conical singularities correspond to primary fields $\Phi_{n}(z, \bar{z})$ of scaling dimensions

$$
\Delta_{n}=\bar{\Delta}_{n}=\frac{c}{24}\left(1-\frac{1}{n^{2}}\right)
$$

$c=$ central charge of the system at the critical point.
$\Rightarrow \Phi_{n}(z, \bar{z})$ is a relevant operator \Rightarrow drives the system away form the critical point
\Rightarrow The new stable fixed point has $c=0$

Numerical simulations

We investigated the nature of the fixed point with Monte Carlo calculations on the spin- $\frac{1}{2}$ quantum chain coupled to a transverse magnetic field $h \widehat{H}=-\lambda \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}-h \sum_{i} \sigma_{i}^{x}$

* It has a $T=0$ phase transition described by a 2D CFT with $c=\frac{1}{2}$ (i.e.a critical Ising model)
* In a first series of numerical experiments we considered a 1D setting for the ensemble $\{A\}$

$$
C(L, s)=\left\langle\sigma_{i}^{z} \sigma_{i+L / s}^{z}-\sigma_{i}^{z} \sigma_{i+L / 2}^{z}\right\rangle ; \quad C(\lambda L, s)=\lambda^{-x} C(L, s)
$$

$\lambda^{-x}=C(\lambda L, 8) / C(L, 8)$ as a function of branch point fugacity z for $L=96, \lambda=\frac{4}{3}$ and two replicas

* In a second series of numerical experiments we considered a truly 2D setting, with no limitations on the location of cuts representing the accessible subsystems.

\Rightarrow the gas of conical singularities is spread in the bulk and drives the system away from the critical point of the pure system
* For a critical value of z the coupled system undergoes a second order phase transition
* In a second series of numerical experiments we considered a truly 2D setting, with no limitations on the location of cuts representing the accessible subsystems.

\Rightarrow the gas of conical singularities is spread in the bulk and drives the system away from the critical point of the pure system
* For a critical value of z the coupled system undergoes a second order phase transition
* In a second series of numerical experiments we considered a truly 2D setting, with no limitations on the location of cuts representing the accessible subsystems.

\Rightarrow the gas of conical singularities is spread in the bulk and drives the system away from the critical point of the pure system
* For a critical value of z the coupled system undergoes a second order phase transition

Finite size effects on branch point density against z

$\Rightarrow z_{c}=0.01127(1)$

Knizhnik-Polyakov- Zamolodchikov relations

$$
\Delta^{0}=\Delta+\frac{\gamma^{2}}{4} \Delta(\Delta-1), \gamma=\sqrt{\frac{25-c}{6}}-\sqrt{\frac{1-c}{6}},
$$

relate the scaling dimensions Δ^{0} of a primary field of a CFT to the scaling dimension Δ of this operator when the theory is coupled to 2 D quantum gravity.
In the critical Ising model $c=\frac{1}{2}$

* spin primary field $\Delta_{\sigma}^{0}=\frac{1}{16} \Rightarrow \Delta_{\sigma}=\frac{1}{6}$
* energy primary field $\Delta_{\epsilon}^{0}=\frac{1}{2} \Rightarrow \Delta_{\epsilon}=\frac{2}{3}$

Power law of critical correlators

* $1 D n=2, n=3$ setting $C(L, s)=\frac{a}{L^{4 \Delta_{\sigma}+n-1}}$
* 2D setting: $C(L, s)=\frac{a}{L^{4 \Delta \sigma}} \quad \Delta_{\sigma}=\frac{1}{6}$

Energy primary field

link $=\left\langle\sigma_{x}^{z} \sigma_{x+a}^{z}\right\rangle=e_{o}+e_{1} / L^{2 \Delta_{\epsilon}}+e_{2} / L^{2 \Delta_{\epsilon}+1} \quad \Delta_{\epsilon}=\frac{2}{3}$

Conclusions

* We studied the back-reaction of the accessible subsystems of a 1D quantum system.
* the coupling to the Gibbs ensemble of all the possible subsystems is relevant and drives the system into a new fixed point
* numerical experiments on the critical Ising model show that the new critical exponents agree with the KPZ formula of 2D quantum gravity
* Extension to higher dimensions is straightforward

[^0]: n replicas

