How the Quark Number fluctuates in QCD at small chemical potential

 Kim Splittorff

 Kim Splittorff
 with: Maria Paola Lombardo
 Jac Verbaarschot

Lattice2010, Sardinia, 17 June 2010

What: The distribution $\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ of n
Why: Understand how $\langle n\rangle$ builds up
How: Analytically in Chiral Perturbation Theory

What: The distribution $\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ of n
Why: Understand how $\langle n\rangle$ builds up
How: Analytically in Chiral Perturbation Theory

Shows: How Complex Langevin solves sign problems

Pions have zero baryon charge

- so how can CPT teach us about n ?

Certainly in CPT

$$
\langle n\rangle=0
$$

Certainly in CPT

$$
\langle n\rangle=0
$$

But $\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ is non trivial in CPT

Warning: $\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ is the distribution of n over A_{ν}

$$
n \equiv \frac{d}{d \mu} \log \operatorname{det}\left(D+\mu \gamma_{0}+m\right)
$$

The average quark number, $\left\langle n_{q}\right\rangle$, is

$$
\left\langle n_{q}\right\rangle \equiv\langle n\rangle
$$

The average of the square of the quark number

$$
\left\langle n_{q}^{2}\right\rangle=\frac{1}{Z} \frac{d^{2}}{d \mu^{2}} Z=\left\langle n^{2}\right\rangle+\left\langle\left(\frac{d n}{d \mu}\right)\right\rangle
$$

The average of the square of n

$$
\left\langle n^{2}\right\rangle=\left.\frac{1}{Z} \frac{d}{d \mu_{u}} \frac{d}{d \mu_{d}} Z\right|_{\mu_{u}=\mu_{d}=\mu}
$$

The average of the square of the quark number

$$
\left\langle n_{q}^{2}\right\rangle=\frac{1}{Z} \frac{d^{2}}{d \mu^{2}} Z=\left\langle n^{2}\right\rangle+\left\langle\left(\frac{d n}{d \mu}\right)\right\rangle
$$

The average of the square of n

$$
\left\langle n^{2}\right\rangle=\left.\frac{1}{Z} \frac{d}{d \mu_{u}} \frac{d}{d \mu_{d}} Z\right|_{\mu_{u}=\mu_{d}=\mu}
$$

$\left\langle n_{q}^{2}\right\rangle$ not the second moment of $\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$

In CPT

Certainly

$$
\left\langle n_{q}^{2}\right\rangle=0
$$

In CPT

Certainly

$$
\left\langle n_{q}^{2}\right\rangle=0
$$

But

$$
\left\langle n^{2}\right\rangle=\left.\frac{d^{2}}{d \mu_{1} d \mu_{2}} G_{0}\left(\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu} \neq 0
$$

In CPT

Certainly

$$
\left\langle n_{q}^{2}\right\rangle=0
$$

But

$$
\left\langle n^{2}\right\rangle=\left.\frac{d^{2}}{d \mu_{1} d \mu_{2}} G_{0}\left(\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu} \neq 0
$$

1-loop free energy

$$
G_{0}\left(\mu_{1}, \mu_{2}\right)=V \frac{m_{\pi}^{2} T^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}\left(\frac{m_{\pi} n}{T}\right)}{n^{2}} \cosh \left(\frac{\mu_{1}-\mu_{2}}{T} n\right)
$$

Fluctuations in the complex n plane

$$
n(\mu)^{*}=\left(\operatorname{Tr} \frac{\gamma_{0}}{D+\mu \gamma_{0}+m}\right)^{*}=-n(-\mu)
$$

Fluctuations in the complex n plane

$$
n(\mu)^{*}=\left(\operatorname{Tr} \frac{\gamma_{0}}{D+\mu \gamma_{0}+m}\right)^{*}=-n(-\mu)
$$

$$
P_{n}(x, y) \equiv\langle\delta(x-\operatorname{Re}[n]) \delta(y-\operatorname{Im}[n])\rangle
$$

Compute all moments $\left\langle\operatorname{Re}[n]^{k} \operatorname{Im}[n]^{j}\right\rangle$ in CPT

The n distribution for $\mu<m_{\pi} / 2$

$N_{f}=2$

Factorization at 1-loop

$$
P_{n}(x, y)=P_{\operatorname{Re}[n]}(x) P_{\operatorname{Im}[n]}(y)
$$

The n distribution for $\mu<m_{\pi} / 2$
$N_{f}=2$

Factorization at 1-loop

$$
P_{n}(x, y)=P_{\operatorname{Re}[n]}(x) P_{\operatorname{Im}[n]}(y)
$$

$P_{\operatorname{Re}[n]}(x) \simeq e^{-\left(x-\nu_{I}\right)^{2} /\left(\chi_{u d}^{B}+\chi_{u d}^{I}\right)} \quad P_{\operatorname{Im}[n]}(y) \simeq e^{\left(i y+\nu_{I}\right)^{2} /\left(\chi_{u d}^{I}-\chi_{u d}^{B}\right)}$

Note that $P_{\operatorname{Im}[n]}(y)$ takes complex values (the sign problem)

The n distribution for $\mu<m_{\pi} / 2$

Factorization at 1-loop

$$
P_{n}(x, y)=P_{\operatorname{Re}[n]}(x) P_{\operatorname{Im}[n]}(y)
$$

$P_{\operatorname{Im}[n]}(y):$ Amplitude $\sim e^{V} \quad$ Width $\sim \sqrt{V} \quad$ Period ~ 1

The expectation value of the quark number is zero in CPT

$$
\begin{aligned}
\langle n\rangle & =\int d x d y(x+i y) P_{n}(x, y) \\
& =\int d x x P_{\operatorname{Re}[n]}(x)+i \int d y y P_{\operatorname{Im}[n]}(y) \\
& =\nu_{I}+i i \nu_{I}=0
\end{aligned}
$$

The expectation value of the quark number is zero in CPT

$$
\begin{aligned}
\langle n\rangle & =\int d x d y(x+i y) P_{n}(x, y) \\
& =\int d x x P_{\operatorname{Re}[n]}(x)+i \int d y y P_{\operatorname{Im}[n]}(y) \\
& =\nu_{I}+i i \nu_{I}=0
\end{aligned}
$$

Detailed cancellation between the contribution from the real part and the imaginary part

Complex Langevin

The CL action for $y=\operatorname{Im}[n]$

 $\left(N_{f}=2\right)$$$
S=-\log \left[P_{\operatorname{Im}[n]}(y)\right]
$$

Complexify $\operatorname{Im}[n]: y=a+i b$

Aarts personal correspondence (2009)
de Forcrand PoS (LAT2009) 10, arXiv:1005.0539
Lombardo Splittorff Verbaarschot PRD 81:045012,2010

Complex Langevin

The CL action for $y=\operatorname{Im}[n]$

 $\left(N_{f}=2\right)$$$
S=-\log \left[P_{\operatorname{Im}[n]}(y)\right]
$$

Complexify $\operatorname{Im}[n]: y=a+i b$

CL works perfectly !

Aarts personal correspondence (2009)
de Forcrand PoS (LAT2009) 10, arXiv:1005.0539
Lombardo Splittorff Verbaarschot PRD 81:045012,2010

Complex Langevin

Illustration by Philippe de Forcrand

Aarts personal correspondence (2009)
de Forcrand PoS (LAT2009), 10
Lombardo Splittorff Verbaarschot PRD 81:045012,2010

Complex Langevin

Illustration by Philippe de Forcrand
CPT tells us:

1) Amplitude: real axis $\mathcal{O}(\exp (V))$; complex plane $\mathcal{O}(1)$
2) shift by $\mathcal{O}(V)$ in imaginary direction

n-distribution for $\mu>m_{\pi} / 2$

n-distribution for $\mu>m_{\pi} / 2$

CL OK for 1dQCD Aats spiltoftraxiv:1006.0332

Conclusions

Interplay between lattice QCD and analytic QCD is essential to understand QCD at $\mu \neq 0$

Conclusions

Interplay between lattice QCD and analytic QCD is essential to understand QCD at $\mu \neq 0$

Here:
Derived the distribution of n from CPT
Studied how $\langle n\rangle$ becomes zero (cancellations)
Directly linked Complex Langevin

Additional slides

The sign problem

$$
Z_{1+1}=\int d A \operatorname{det}^{2}(D+\underbrace{}_{\text {Anti Hermitian }} \underbrace{}_{\text {Hermitian }}
$$

$$
\operatorname{det}^{2}\left(D+\mu \gamma_{0}+m\right)=\left|\operatorname{det}\left(D+\mu \gamma_{0}+m\right)\right|^{2} e^{2 i \theta}
$$

The measure is not real and positive

The sign problem

$$
Z_{\text {Anti Hermitian }} \underbrace{}_{\text {Hermitian }} d A \operatorname{det}^{2}(D+\underbrace{\left.-\gamma_{0}+m\right) e^{-S_{\mathrm{YM}}}}
$$

$$
\operatorname{det}^{2}\left(D+\mu \gamma_{0}+m\right)=\left|\operatorname{det}\left(D+\mu \gamma_{0}+m\right)\right|^{2} e^{2 i \theta}
$$

The measure is not real and positive

No Monte Carlo sampling of A_{η} at $\mu \neq 0$

In terms of the eigenvalues, z_{k}, of $\gamma_{0}(D+m)$

$$
\begin{aligned}
n_{q} & =n=\sum_{k} \frac{1}{z_{k}+\mu} \\
n_{q}^{2} & =\sum_{k \neq l} \frac{1}{z_{k}+\mu} \frac{1}{z_{l}+\mu} \\
n^{2} & =\sum_{k, l} \frac{1}{z_{k}+\mu} \frac{1}{z_{l}+\mu}=\left[\sum_{k} \frac{1}{z_{k}+\mu}\right]^{2}
\end{aligned}
$$

In terms of the eigenvalues, z_{k}, of $\gamma_{0}(D+m)$

$$
\begin{aligned}
n_{q} & =n=\sum_{k} \frac{1}{z_{k}+\mu} \\
n_{q}^{2} & =\sum_{k \neq l} \frac{1}{z_{k}+\mu} \frac{1}{z_{l}+\mu} \\
n^{2} & =\sum_{k, l} \frac{1}{z_{k}+\mu} \frac{1}{z_{l}+\mu}=\left[\sum_{k} \frac{1}{z_{k}+\mu}\right]^{2}
\end{aligned}
$$

$\left\langle n_{q}^{2}\right\rangle$ not the average of a square not the second moment of a distribution

How large should $y_{\max }$ be in order that

$$
\int_{-y_{\max }}^{y_{\max }} d y i y P_{\operatorname{Im}[n]}^{1+1}(y) \sim-\nu_{I}
$$

The answer is:

$$
y_{\max } \sim \nu_{I} \sim V
$$

How large should $y_{\max }$ be in order that

$$
\int_{-y_{\max }}^{y_{\max }} d y i y P_{\operatorname{Im}[n]}^{1+1}(y) \sim-\nu_{I}
$$

The answer is:

$$
y_{\max } \sim \nu_{I} \sim V
$$

Observation: We must integrate over V periods of the oscillations in order to obtain the density

The range needed and the $\operatorname{Im}[n]$ generated $\left(\mu<m_{\pi} / 2\right)$

$$
\int_{-y_{\max }}^{y_{\max }} d y i y P_{\operatorname{Im}[n]}^{1+1}(y) \sim-\nu_{I}
$$

$\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ shows the pion noise

$$
\langle n\rangle=\int d n^{\prime} n^{\prime}\left\langle\delta\left(n-n^{\prime}\right)\right\rangle
$$

$\left\langle\delta\left(n-n^{\prime}\right)\right\rangle$ shows the pion noise

$$
\langle n\rangle=\int d n^{\prime} n^{\prime}\left\langle\delta\left(n-n^{\prime}\right)\right\rangle
$$

The sign problem and Complex Langevin

Notation

$$
\begin{aligned}
\nu_{I} & \left.\equiv \frac{d}{d \mu_{1}} \Delta G_{0}\left(\mu_{1},-\mu\right)\right|_{\mu_{1}=\mu} \\
\chi_{u d}^{B} & \left.\equiv \frac{d^{2}}{d \mu_{1} d \mu_{2}} \Delta G_{0}\left(\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu} \\
\chi_{u d}^{I} & \left.\equiv \frac{d^{2}}{d \mu_{1} d \mu_{2}} \Delta G_{0}\left(-\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu}
\end{aligned}
$$

Notation

$$
\begin{aligned}
\nu_{I} & \left.\equiv \frac{d}{d \mu_{1}} \Delta G_{0}\left(\mu_{1},-\mu\right)\right|_{\mu_{1}=\mu} \\
\chi_{u d}^{B} & \left.\equiv \frac{d^{2}}{d \mu_{1} d \mu_{2}} \Delta G_{0}\left(\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu} \\
\chi_{u d}^{I} & \left.\equiv \frac{d^{2}}{d \mu_{1} d \mu_{2}} \Delta G_{0}\left(-\mu_{1}, \mu_{2}\right)\right|_{\mu_{1}=\mu_{2}=\mu}
\end{aligned}
$$

$$
\Delta G_{0}\left(\mu_{1}, \mu_{2}\right)=V \frac{m_{\pi}^{2} T^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{K_{2}\left(\frac{m_{\pi} n}{T}\right)}{n^{2}}\left[\cosh \left(\frac{\mu_{1}-\mu_{2}}{T} n\right)-1\right]
$$

