Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions

Bastian Brandt

Institut für Kernphysik

In collaboration with Hartmut Wittig (Mainz), Owe Philipsen (Frankfurt) and Lars Zeidlewicz (Frankfurt)

14.06.2010

Contents

- 1. Setup
- 2. Current status
- 3. Multi-Histogram methods
- 4. Conclusions and outlook

Towards the N_F = 2 deconfinement transition temperature with $\mathcal{O}(a)$ improved Wilson fermions \Box_{Setup}

1. Setup

Almost all simulations so far were done with Staggered fermions \Rightarrow $T_C = 150 - 190 \text{ MeV}$

But: Possible conceptual problems (\Rightarrow rooting)

Tests with other discretizations are needed!

 \Rightarrow Use $\mathcal{O}(a)$ improved Wilson fermions (mtmF,clover)

First results are available from QCDSF-DIK and also from tmfT.

 \Rightarrow See previous talks! (Bornyakov, Zeidlewicz)

Action and algorithm

Here we use nonperturbatively $\mathcal{O}(a)$ improved Wilson fermions:

$$S_{SW} = S_W + c_{SW} \frac{a^5 i \kappa}{4} \sum_x \bar{\psi}(x) \sigma_{\mu\nu} \hat{F}_{\mu\nu}(x) \psi(x) + \beta S_G$$

[Sheikoleslami, Wohlert (1985)]

Here $\hat{F}_{\mu\nu}(x)$ is some suitable representation of the field strength tensor. S_W and S_G are Wilson's fermion and gauge field lattice actions. c_{SW} is tuned such that spectral quantities are $\mathcal{O}(a)$ improved in the chiral limit.

We use the highly optimized deflation accelerated DD-HMC algorithm for the simulations.

[Lüscher, (2004-2005), e.g. hep-lat/0509125]

- Not optimal for small lattices, but very efficient for larger ones.
- Constrains the possible temporal extents to 12, 16, 20, 24, ...

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions $_$ Setup

Strategy

Goal: Extract the transition temperature and the order of the $N_f = 2$ transition in the chiral limit.

- \blacktriangleright we scan in β with fixed 'mass' κ
 - \Rightarrow We might use modified Ferrenberg-Swendsen reweighting.
- c_{SW}(β) is nonperturbatively tuned to ensure O(a) improvement of spectral quantities.

The scale is set via additional runs at T = 0.

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \Box Current status

2. Current status

Scans

► 12×24^3 $m_{\pi} \approx 600$ MeV (Test scan at $\kappa = 0.13595$) ⇒ Equivalent to one of the finest QCDSF-DIK point (⇒ $\beta_C = 5.29$).

Lower edge of the working region of the algorithm!

► 16×32^3 $m_{\pi} \approx 400$ MeV (First exploratory $N_t = 16$ scan.) Algorithm is stable and fast!

The volume is still small ($m_{\pi} L \approx 3$; estimated using CLS-data).

But: Reference point and benchmark for further $N_t = 16$ runs.

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \Box Current status

 12×24^3 $m_\pi \approx 600$ MeV

Statistic: $\mathcal{O}(25000)$ $\mathcal{O}(7500)$ $\tau = 2.0$ (1 meas every tr.)

 $\beta_C \approx 5.301(3)$

Error is taken naïvely from the nearest neighbors. T_C is a little higher as in the analogous QCDSF-DIK scan. (consistent with tmfT results) Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \Box Current status

 $16 imes 32^3$ $m_\pi pprox 400$ MeV

Statistic: O(1500) $\tau = 2.0$ (1 meas every 2 tr.)

 $\beta_C \approx 5.45(3)$ very preliminary

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \square Multi-Histogram methods

3. Multi-Histogram methods

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions — Multi-Histogram methods

Reweighting

Reweighting is widely used in MC-Simulations. (PHMC,RHMC,finite μ , ...)

Ferrenberg-Swendsen Reweighting:

Reweighting: We can use a Monte-Carlo simulation at β_0 to calculate the expectations value of some observable A at β

[Ferrenberg, Swendsen (1988)]

Problem: The reweighting factor for a configuration with averaged gauge action S_G is damped with $e^{-S_G (\beta - \beta_0)}$

 $\Rightarrow\,$ for reweighting to work accurately: $\beta\approx\beta_0$

Usual multi-histogram methods

MH-method: Use a set of measurements with β_{α} close to β as a basis for the interpolation of expectation values. [Huang, Moriarty, Myers, Potvin (1990)]

Limitation: The usual method only works if $\frac{d}{d\beta} \det(M) = 0!$

For $\mathcal{O}(a)$ improved Wilson fermions (and others) this is no longer true!

 \Rightarrow A modification is needed!

A naïve extention doesn't work, because one would need the full knowledge about the fermion determinant. (Another problem: find a global density *D*)

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions Multi-Histogram methods

Modified Multi-Histogram method

⇒ We have to use a trick and introduce a reference point $\beta = \beta_R$ for the fermionic part of the reweighting.

Appearing new factors:

$$R(eta,eta_0)[U] = igg[rac{\det{(M(eta)[U])}}{\det{(M(eta_0)[U])}}igg]^{N_f}$$

(more precisely two factors $R(\beta, \beta_R)$ and $R(\beta_R, \beta_\alpha)$.)

Find a method to measure R without measuring the full determinant!

Approximation of R for clover fermions

For clover fermions the fermion matrix can be written as:

$$M(\beta)[U] = M_W[U] + c_{SW}(\beta) M_{SW}[U]$$

$$\Rightarrow M(\beta) = M(\beta_0) + \Delta c_{SW}(\beta, \beta_0) M_{SW}$$

This means for the ratio:

 $R(\beta,\beta_0) = \left[\det\left(1 + \Delta c_{SW}(\beta,\beta_0) \ M^{-1}(\beta_0) \ M_{SW}\right)\right]^{N_f}$

For typical scans $\Delta c_{SW} = \mathcal{O}(10^{-2})$ if β_R is set to β_C .

 \Rightarrow Expand det (...) in Δc_{SW} !

 $\begin{aligned} R(\beta,\beta_0) &= 1 + N_f \, \Delta c_{SW}(\beta,\beta_0) \operatorname{Tr} \left(M^{-1}(\beta_0) \, M_{SW} \right) + \mathcal{O} \left((\Delta c_{SW})^2 \right) \\ &= 1 - N_f \, \Delta c_{SW}(\beta_0,\beta) \operatorname{Tr} \left(M^{-1}(\beta) \, M_{SW} \right) + \mathcal{O} \left((\Delta c_{SW})^2 \right) \end{aligned}$

Approximation of R for clover fermions

 \Rightarrow It is sufficient to measure the operator

 $R_{op}(eta_{lpha})\equiv {
m Tr}\left(M^{-1}(eta_{lpha})\ M_{SW}
ight)$

on each configuration to use the multi-histogram method.

Note:

A similar expansion can be done for mtmF.

 [∂]R(β, β₀)/∂Δc_{SW} = N_f R_{op}(β₀)

 \Rightarrow Use R_{op} to model R around β_R and test effects of higher orders and the reliability.

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions — Multi-Histogram methods

Behavior of *R*: 12×24^3 $m_{\pi} \approx 600$ MeV

⇒ The variation is well below the statistical errors! Naive reweighting should be sufficient! Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \square Multi-Histogram methods

Behavior of R_{op} : 16 imes 32³ $m_{\pi} \approx$ 400 MeV

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \square Multi-Histogram methods

Behavior of R: 16×32^3 $m_{\pi} \approx 400$ MeV

Towards the $N_f = 2$ deconfinement transition temperature with O(a) improved Wilson fermions \Box Conclusions and outlook

4. Conclusions and outlook

Conclusions

- I showed first scans, where we approach the measurement of the transition temperature. (Including first N_t = 16 lattices for Wilson fermions!)
- The algorithm is optimal for large lattices and performs well for $N_t = 16$.
- We evolved and implemented a modified multi-histogram method for O(a) improved Wilson fermions. (Also possible to use it for twisted mass!)
- First results showed, that the method should work accurately in our current scans.

Outlook

- We are planing new runs with $m_{\pi} \approx 180 300$ MeV.
 - Including additional observables like screening masses (⇒ need larger volumes)
- We aim at future runs with lattices up to: $N_t = 20$ and $V = 64^3$.
- When the full set of measurements is available, we are going to extract the order of the transition via Binder cumulants and a finite size scaling analysis.