The study of the Three Nucleon Force in full QCD Lattice calculations

Takumi Doi

(Univ. of Tsukuba)

for HAL QCD Collaboration

- S. Aoki, K. Sasaki (Univ. of Tsukuba)
- T. Hatsuda, N. Ishii (Univ. of Tokyo)
- Y. Ikeda (RIKEN)
- T. Inoue (Nihon Univ.)
- K. Murano (KEK)
- H. Nemura (Tohoku Univ.)

HAL QCD strategy

Calculate BS wave func from 4pt

• $\rightarrow \psi(\vec{r}) = \langle 0 | N(\vec{x} + \vec{r}) N(\vec{x}) | 2N \rangle$

C.-J.D.Lin et al., NPB619(2001)467 CP-PACS Coll. PRD71(2005)094504

- The choice of nucleon op. corresponds to the choice of "scheme" (N.B. Observables do not depend on "scheme")
- Define the non-local pot. $(E H_0)\psi(\vec{r}) = \int d\vec{r} U(\vec{r}, \vec{r'})\psi(\vec{r'})$
- Velocity expansion (Okubo-Marshak(1958))

Importance of Three Nucleon Force (TNF)

Precise few-body calc: NN force cannot reproduce B.E.

 $\delta B.E.= 0.5-1 MeV \text{ for } {}^{3}\text{H} \\ \delta B.E.= 2-4 \text{ MeV for } {}^{4}\text{He}$

Attractive TNF necessary

- Saturation density/energy of nuclear matter also requires TNF
 Repulsive TNF
 A density of all DECES(1008)180
 - EOS of neutron star

also necessary

Flavor universal TNF (repulsive) ?

A.Akmal et al., PRC58(1998)1804

Takatsuka et al., Prog.Theor.Phys.Suppl.174(2008)80

- Ay puzzle in N-d scatt. N-A scatt. etc.
- The effect on the nuclear chart
 - Oxygen anomaly (drip line ${}^{28}O \rightarrow {}^{24}O$) by TNF

T.Otsuka et al., arXiv:0908.2607

06/18/2010

Three Nucleon Force (TNF)

- It is natural to expect the existence of TNF
- It is very nontrivial to determine TNF from QCD
- 2πE-TNF Fujita-Miyazawa, Prog.Theor.Phys.17(1957)360

Off-energy-shell πN scatt

- EFT expansion
 - → TNF appears at NNLO order

How can we tackle TNF in Lattice QCD ?

How can we tackle TNF in Lattice QCD ?

Consider the effective 2N-potential in 3N system $\phi(\vec{r}) \equiv \int d\vec{\rho} \psi(\vec{x}, \vec{\rho}) \quad Integrate \ out \ 3rd \ spectator \ DoF$ $(E - H_0^r)\phi(\vec{r}) = \begin{bmatrix} V_{12}(\vec{r}) + \delta V_{eff}(\vec{r}) \end{bmatrix} \phi(\vec{r})$ $= \begin{bmatrix} V_{12}(\vec{r})\phi(\vec{r}) + \int d\vec{\rho}(V_{13}(\vec{r}, \vec{\rho}) + V_{23}(\vec{r}, \vec{\rho}) + V_{TNF}(\vec{r}, \vec{\rho}))\psi(\vec{r}, \vec{\rho}) \end{bmatrix}$

"finite density effect" for 2N-potential

As 3N system, we consider ³H (Triton)

- → Difficulty(1) (Volume factor) is resolved $\mathcal{O}(L^6 \log L^6)$ calc $\longrightarrow \mathcal{O}(L^3 \log L^3)$ calc
- How about Difficulty(2) (contraction/loops) ?
 - Use symmetry as much as possible & skip the calc of redundant components → factor of 16 improvement
 - We propose to use non-rela limit op for nucleon source op. → factor of 8 06/18/2010 Lattice 2010 @ Sardinia, $N^{src} = \epsilon_{abc} (u_a^T C \gamma_5 \frac{1+\gamma_4}{2} d_b) \frac{1+\gamma_4}{2} u_c$ 7

Effective 2N potential

 For the nuclear matter, 2πE-TNF can produce effective repulsion (as well as attraction)

 $\mathcal{O}(10-100)$ MeV potential ?

T.Kasahara, Y.Akaishi, H.Tanaka, Prog.Theor.Phys.Suppl.56(1974)96

- Additionally universal repulsive TNF ? Tamagaki, Takatsuka
 - SJM(string-junction model) → O(10) MeV at ρ_0
 - N.B. SJM may contradicts lattice results for 2N repusive core
- Nijmegen ESC
 - TNF as finite density effect to vector mesons

$$M_V(\rho) = M_V \exp(-\alpha_V \rho / \rho_0), \alpha_V = 0.11 - 0.18$$

06/18/2010

Lattice QCD Calculations

Numerical Setup & Results

Configurations

- Nf=2 dynamical clover fermion + RG improved gauge configs (CP-PACS)
 - 599 configs X 16 measurements
 - beta=1.95, (a⁻¹=1.27GeV, a=0.156fm)
 - 16³ X 32 lattice, L=2.5fm
 - Kappa(ud)=0.13750
 - $M(\pi) = 1.13 \text{GeV}$
 - M(N) = 2.15GeV
 - M(Δ) = 2.31GeV
 - Techniques
 - Automatic Wick contraction code to handle 4 up- and 5 down-quarks
 - Non-rela limit op is used to create 3N state at source

$$N^{src} = \epsilon_{abc} (u_a^T C \gamma_5 \frac{1 + \gamma_4}{2} d_b) \frac{1 + \gamma_4}{2} u_c$$

06/18/2010

Lattice 2010 @ Sardinia, Italy

CP-PACS Coll. S. Aoki et al., Phys. Rev. D65 (2002) 054505 [E: D67 (2003) 059901]

 \rightarrow Factor of 2³=8 faster

Results for wave functions

11

Additional calc w/ smaller mass

- Small TNF because of heavy quark mass? $\begin{bmatrix} e^{-m_{\pi}^{lat}r}/r \end{bmatrix} / \begin{bmatrix} e^{-m_{\pi}^{phys}r}/r \end{bmatrix} = 0.08 \quad \text{at } r = 0.5 \text{fm w} / m_{\pi}^{lat} = 1.13 \text{GeV}$ $2\pi \text{E}-\text{TNF} \Rightarrow (0.08)^2 \text{ suppression } ? \quad In \text{ practice, effective "r" also modified}$
- Nf=2+1 dynamical clover fermion + RG improved gauge configs (PACS-CS)
 - ~400 configs X 4 measurements
 - beta=1.90, (a⁻¹=2.18GeV, a=0.0907fm)
 - 32³ X 64 lattice, L=2.9fm
 - Kappa(ud)=0.13700, 0.13727
 - $M(\pi) = 0.70 \text{GeV}, 0.57 \text{GeV}$
 - M(N) = 1.58GeV, 1.41 GeV
 - $M(\Delta) = 1.79 \text{GeV}, 1.67 \text{ GeV}$

PACS-CS Coll. S. Aoki et al., Phys. Rev. D79 (2009) 034503

$$\begin{bmatrix} e^{-m_{\pi}^{lat}r}/r \end{bmatrix} / \begin{bmatrix} e^{-m_{\pi}^{phys}r}/r \end{bmatrix}$$

= 0.24 ($m_{\pi}^{lat} = 0.70 \text{GeV}$)
= 0.34 ($m_{\pi}^{lat} = 0.57 \text{GeV}$)

Results for wave functions

Summary/Outlook

- We have performed the lattice QCD study of the <u>Three Nucleon Force (TNF)</u>
 - We have calculated <u>"effective" 2N-potential</u> in 3N (³H) system
 - Nf=2, 2+1 dynamical clover fermion with $m\pi = 1.13$, 0.70, 0.57GeV
 - The effective 2N-potential have been obtained with good precision
 - Errors for the differences of potentials are several MeV order
 - So far, no indication of TNF has been observed
- Outlook
 - The evaluation of Jacobi-"off-diagonal" 2N potential contribution
 - → genuine TNF can be extracted
 - Calc w/ lighter quark masses, different volume lat box
 - Different 3D-configurations of 3N in progress (linear, triangle, etc.)

Backup Slides

Nuclear matter/EoS of Neutron Star

- Repulsion from 2πE-TNF is not sufficient to sustain neutron star
 - Softening by Y-mixing \rightarrow M(max)~1.2M_{\odot} where Λ mixing causes a problem (No $\Lambda\Lambda\pi$ coupling)
 - → "Universal extra repulsion" is necessary
 - Example: string junction model (SJM)

T.Takatsuka, S.Nishizaki, R.Tamagaki Prog.Theor.Phys.Suppl.174(2008)80