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Plan of the Talk

• Universality of the effective corrections to the interquark potential

• Flux density in presence of two Polyakov loops

• Effective string corrections for the mean flux density.

• Comparison with high precision simulations in the 3d Ising model and
estimate of the sixth order correction.
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Universality of the effective string corrections

One of the most interesting recent results in effective string theory are
the universality theorems for the quartic (Lüscher and Weisz 2004) and
sextic (Aharony and Karzbrun 2009) corrections to the interquark potential.
A numerical test of universality would be of great importance, but it turns
out to be very difficult for two reasons:

• In the standard ”zero temperature” interquark potential, higher order
corrections are proportional to higher powers in 1/R and are thus visible
only at very short distance where the effective string picture breaks down
and perturbative contributions become important.

• The dominant string correction (the Lüscher term) may shadow the
subleading ones
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To solve these two problems we propose the following strategy:

1) We study the interquark potential at finite temperature (just below
the deconfinement transition). In this regime the string corrections are
proportional to R and act as a temperature dependent renormalization
of the string tension.

Higher order corrections correspond to higher powers of T and can be
observed much better than in the zero temperature limit.

2) In order to eliminate the dominant Lüscher term we shall not measure
directly the interquark potential, but shall instead study the changes
induced in the flux configuration by the presence of the Polyakov loops.
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Flux density in presence of two Polyakov loops.

The flux through a plaquette p in presence of two Polyakov loops P , P ′

is:

〈φ(p;P, P ′)〉 =

〈
PP ′† Up

〉
〈PP ′†〉

− 〈Up〉

The mean flux density is

〈Φ(R,L)〉 =
1
Np

∑
p

〈
PP ′† Up

〉
〈PP ′†〉

where we have neglected the disconnected component 〈Up〉 since we shall
be interested in the following only to terms proportional to R.
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If we define the partiton function of the system in presence of the two
Polyakov loops as

Z(R,L) = 〈P †(R)P (0)〉
then the flux 〈Φ(R,L)〉 can be written as:

〈Φ(R,L)〉 =
1
Np

d

dβ
logZ(R,L) .

If we neglect for the moment effective string corrections and keep only the
area term in Z, i.e. Z(L,R) ∼ e−σRL we find a linearly rising behaviour
for 〈Φ(R,L)〉:

〈Φ(R,L)〉 = αR

with an angular coefficient

α =
L

Np

dσ

dβ
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Effective string corrections

〈P †(R)P (0)〉 = Z(L,R) ∼
∫
DXe−S[X] .

If we choose a Nambu-Goto action for the effective string (and set d = 2+1)
then:

S[X] = σ

∫ L

0

dτ

∫ R

0

dς
√

1 + (∂τX)2 + (∂ςX)2 .
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Perturbative expansion in powers of 1/(σRL)

Z(L,R) = e−σRL · Z1 ·
(

1 +
F4

σR2
+

F6

(σR2)2
+ · · ·

)

The leading order of this expansion: Z1 corresponds to the partition
function of a free boson in two dimensions and thus is scale invariant.

Hence, since Z(R,L) may depend on β only through the string tension
σ the leading correction to 〈Φ(R,L)〉 (the Lüscher term) vanishes.

7



A straightforward calculation (Dietz-Filk 1983) gives:

F4 =
π2L

1152σR3

[
2E4

(
i
L

2R

)
− E2

2

(
i
L

2R

)]
,

where Ek are Eisentein functions of order k

We obtain in the large R limit:

〈Φ(R,L)〉 = α

(
π2

72σ2L4
R+

π

12σ2L3
+

1
8σ2L2

1
R

)
which must be added to the ”classical” contribution:

〈Φ(R,L)〉 = αR
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All orders calculations in the Nambu-Goto case

In d = 2 + 1 dimensions one finds that Z(R,L) is given by a tower of
K0 Bessel functions (Lüscher-Weisz 2004):

Z(R,L) = 〈P (0, 0)P (0, R)〉 =
∞∑
n=0

cnK0(EnR).

where En are the closed string energy levels:

En = σL

{
1 +

8π
σL2

[
− 1

24
(d− 2) + n

]}1/2

.
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In the large R limit only the lowest state (n = 0) survives

lim
R→∞

〈P (0, 0)P (0, R)〉 = c0K0(E0R).

with

E0 = σL
(

1− π

3σL2

)1/2

.

and

c0 =
L

2

√
σ

π

where σ denotes the zero temperature string tension.
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From which we find:

〈Φ(R,L)〉 =
1
Np

d logZ(R,L)
dβ

=
1
Np

(
1

2σ
+R

K ′0
K0

dE0

dσ

)
dσ

dβ

where we used again the fact that Z(R,L) is a function of β only
through the string tension σ
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Setting

x ≡ π

3σL2

we find
dE0

dσ
=
L(1− x/2)√

1− x

Recalling that
K ′0 = −K1

and using the asymptotic expansion of the modified Bessel functions:

K1(E0R)
K0(E0R)

= 1 +
1

2E0R
− 1

8(E0R)2
+ ...
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Collecting all the terms together we find

〈Φ(R,L)〉 = α

(
RA(x) +B(x) +

C(x)
R

+ ...

)
where we defined:

A(x) =
(1− x/2)√

1− x
B(x) = − 1

σL

x

4(1− x)

C(x) =
1− x/2

8(Lσ)2(1− x)3/2

in (2+1) dimensions Np = 3N2
sL and hence:

α = − 1
3N2

s

dσ

dβ
.
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Expanding in x ≡ π
3σL2 we find

A(x) =
(

1 +
x2

8
+
x3

8
+ ...

)

B(x) =
1
σL

(
x

4
+
x2

4
+ ...

)
C(x) = − 1

8(σL)2

(
1 +

3
2
x+ ...

)

which at the first order coincide with the corrections obtained with the
Dietz-Filk approach. In addition we find the next to leading corrections of
order 1/L6.
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Comparison with the numerical data

To test these results we performed a set of Montecarlo simulations in
the 3d gauge Ising model for various values of R and L.

We used duality to map the Polyakov loops correlator into the partition
function of a 3d Ising spin model in which we changed the sign of the
coupling of all the links dual to the surface bordered by the two Polyakov
loops.

We then estimated 〈Φ(R,L)〉 by simply evaluating the mean energy in
presence of these frustrated links.

The results are in remarkable agreement with the string calculation at
the quartic order but disagree with the sextic order correction.
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For this model the scaling function σ(β) is known with high precision

σ(β) = σct
2ν × (1 + atθ + bt) .

with: a = −0.479(26) b = −2.12(19) θ = 0.5241(33) σc = 10.083(8)
ν = 0.63002(10)

t is the reduced temperature of the dual spin model: t = βs−βc,s where
the duality relation is

βs = −1
2

log thβ

and the critical coupling for the spin model is: βc,s = 0.22165455(5)
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Simulation setting

We simulated the model at β = 0.75180 for which Lc = 1/Tc = 8,
choosing Ns = 128 which implies α = 2.792 10−5.

We chose two sets of values for L

• Low T set (Tc3 < T < Tc
2 ): L = 16, 20, 24. For these values the sextic

and higher order terms are negligible within the errors

• High T set (2Tc
3 < T < Tc): L = 10, 11, 12. For these values the sextic

term is larger than the statistical uncertainties.
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Results:

• Low T set:

for each L we fit the R dependence of the data with

Φ(R,L) = a(L)R+ b(L)

(the c(L)/R was always negligible within the errors) and always found
very good χ2 Then we fitted the values of a(L) with:

a(L) = α(1 + γx2)

we found α = 2.7918(17) 10−5 and γ = 0.132(7) with a very good χ2.
Both these values nicely agree with the predictions α = 2.792 10−5 and
γ = 1/8.
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• High T set: In this case we must include also the 1/R term in the fit:

Φ(R,L) = a(L)R+ b(L) + c(L)/R

Then we fitted the values of a(L) (including also those at low T ) with:

a(L) = α(1 + γx2 + δx3)
and find

α = 2.796(5) 10−5, γ = 0.127(25), δ = −0.051(27)

The first two values agree again very well with the predictions but the
coefficient of the sextic correction, which should be δ = 1/8 completely
disagrees.
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Conclusions

• We confirm the universality of the subleading effective string corrections
at the quartic order

• We found deviations at the sextic order with respect to the Nambu-Goto
predictions thus suggesting a failure of the universality proof by Aharony
and Karzbrun at this order. We see three possible reasons for this failure

– It could be due to the presence of an irrelevant operator in the Ising
gauge model with a very large overlap with our observable

– It could be due to the failure of the weak coupling assumption for the
effective string model

– It could be due to the anomaly which affects the physical gauge in
d 6= 26
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• Duality plays a crucial role in the simulation and for this reason our
approach is particularly suited for abelian gauge theories, but in principle,
given enough computational power, there is no obstruction to apply it
also to non-abelian models.
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