Lattice QCD analysis for the instantaneous interquark potential in the generalized Landau gauge

Takumi Iritani and Hideo Suganuma

Kyoto Univ.

June 14, 2010. Lattice2010 Villasimius, Sardinia, Italy

Quantum Chromodynamics and Gauge

Quantum Chromodynamics — $SU(N_c)$ gauge theory

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2} \text{Tr} \ G_{\mu\nu} G^{\mu\nu} + \bar{q} \left(i \gamma_{\mu} D^{\mu} - m \right) q$$

For actual calculations \Rightarrow fix the gauge • Landau gauge		
	For example	Coulomb gauge
		 Maximally Abelian gauge
		•
physical phenomena 🔿 gauge invariant		
• confinement		
• chiral symmetry breaking		
• hadron mass		
•		

But physical pictures depend on gauges.

Confinement in the Various Gauge

Confinement in the Maximally Abelian gauge

Dual-superconductor picture — Nambu, 't Hooft, Mandelstam

• QCD vacuum \Rightarrow Dual superconductor \Rightarrow Dual Meissner effect

Confinement in the Landau gauge

Kugo-Ojima criterion — T.Kugo, and I.Ojima, Suppl.Prog.Theor. Phys. 66, 1-130(1979). If ghost propagator $D_G(p^2)$ becomes more singular than free propagator

$$\lim_{p^2 \to 0} p^2 D_G(p^2) = \infty$$

then

BRS singlet ⇒ color singlet

Confinement in the Coulomb Gauge — Gribov-Zwanziger's Scenario

- V.Gribov, Nucl, Phys. B139, 1(1978); D.Zwanzgier, Nucl.Phys. B518, 237(1998).

QCD Hamiltonian in the Coulomb gauge

$$H = \frac{1}{2} \int d^3x \left(\vec{E}^{a,tr} \cdot \vec{E}^{a,tr} + \vec{B}^a \cdot \vec{B}^a \right) + \frac{1}{2} \int d^3x d^3y \rho^a(x) K^{ab}(x,y) \rho^b(y)$$

$$\begin{split} K &\equiv [M^{-1}(-\nabla^2)M^{-1}]^{ab}_{x,y}: \text{ instantaneous Coulomb propagator} \\ M: \text{ Faddeev-Popov operator} \\ \rho: \text{ color charge density} \end{split}$$

Coulomb energy part — ho K ho

- Gribov horizon \Leftarrow zero eigenvalues of M
- near Gribov horizon ⇒ strongly enhancement of the Coulomb energy
- \Rightarrow Confinement force

Instantaneous Potential in the Coulomb Gauge

numerical result of the Coulomb energy

Instantaneous potential

 $V(R,0) = -\log[\operatorname{Tr}\langle U_4(0,0)U_4^{\dagger}(R,0)\rangle]$

- 2-3 times larger than physical string tension
- Zwanziger's inequality

D.Zwanziger, PRL.90, 102001(2003). $V_{\rm phys}(R) \leq V_{\rm Coul}(R)$

J.Greensite, S.Olejnik, PRD.67, 094503(2003).

The role of gluons is changed according to gauges

- Landau gauge
 - $A^a_\mu \Rightarrow$ equal roles
- Coulomb gauge
 - spatial component $\mathbf{A} = (A_1, A_2, A_3) \Rightarrow$ dynamical variable
 - temporal component $A_0 \Rightarrow$ potential
- Maximally Abelian gauge
 - diagonal part $A^3_{\mu}, A^8_{\mu} \Rightarrow$ dominant
 - off-diagonal part \Rightarrow inactive K.Amemiya, and H.Suganuma, PRD.60, 114509 (1999)

The role of gluons is changed according to gauges

- Landau gauge
 - $A^a_\mu \Rightarrow$ equal roles
- Coulomb gauge
 - spatial component $\mathbf{A} = (A_1, A_2, A_3) \Rightarrow$ dynamical variable
 - temporal component $A_0 \Rightarrow$ potential
- Maximally Abelian gauge
 - diagonal part $A^3_{\mu}, A^8_{\mu} \Rightarrow$ dominant
 - off-diagonal part \Rightarrow inactive K.Amemiya, and H.Suganuma, PRD.60, 114509 (1999)

In this talk, we discuss the gluon properties from Landau gauge toward Coulomb gauge.

Landau Gauge and Coulomb Gauge

Landau gauge

$$\partial_{\mu}A_{\mu} = 0$$

global form (in the Euclidean metric)

minimize
$$R \equiv \int d^4x \operatorname{Tr} \left\{ A_{\mu}(x) A_{\mu}(x) \right\}$$

- Lorentz covariance is kept
- gauge field fluctuation ⇒ suppressed

Coulomb gauge

$$\nabla \cdot \mathbf{A} = 0$$

Lorentz covariance is broken

 $A_{\mu} \rightarrow A_0$ and A

compatible with canonical quantization

Similarity of gauge fixing condition

Landau gauge

$$\partial_1 A_1 + \partial_2 A_2 + \partial_3 A_3 + \partial_4 A_4 = 0$$

• Coulomb gauge

 $\partial_1 A_1 + \partial_2 A_2 + \partial_3 A_3 = 0$

Generalization of the Landau Gauge

generalized Landau gauge (λ -gauge)

cf. C.Bernard, et al., Nucl.Phys.B (Proc.Suppl.) 17 (1990) 593; 20 (1991) 410.

 $\partial_i A_i + \lambda \partial_4 A_4 = 0$

- $\lambda = 0 \Rightarrow$ Coulomb gauge
- $\lambda = 1 \Rightarrow$ Landau gauge
- by varying λ -parameter : $\lambda = 1 \rightarrow 0$
- we can analyze continuous change of gluon properties
- from Landau gauge ⇒ Coulomb gauge

on lattice QCD

maximize

$$R_{\lambda}[U] \equiv \sum_{x} \sum_{i=1}^{3} \operatorname{Re} \operatorname{Tr} U_{i}(x) + \lambda \sum_{x} \operatorname{Re} \operatorname{Tr} U_{4}(x)$$

using a gauge transformation of link-variables

Definition of the "instantaneous" potential

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

a:lattice spacing

"Instantaneous" Interquark Potential

Definition of the "instantaneous" potential

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

a:lattice spacing

\leftarrow Coulomb gauge result

J.Greensite, S.Olejnik, PRD.67, 094503(2003). Coulomb + <u>linear</u> potential (2-3 times larger than physical string tension)

"Instantaneous" Interquark Potential

Definition of the "instantaneous" potential

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

a:lattice spacing

$\leftarrow \mathsf{Coulomb} \text{ gauge result}$

J.Greensite, S.Olejnik, PRD.67, 094503(2003). Coulomb + <u>linear</u> potential (2-3 times larger than physical string tension)

 \Rightarrow Analyze gauge dependence of V(R) in the generalized Landau gauge.

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

"instantaneous" potential

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

• Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]

• Landau gauge (
$$\lambda = 1$$
)
No linear part
 $\sigma \sim 0$ [GeV/fm]

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between Landau and Coulomb

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between Landau and Coulomb

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between Landau and Coulomb

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between Landau and Coulomb

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between Landau and Coulomb

lattice QCD result ($\beta = 5.8$, a = 0.152 fm, 16^4 lattice)

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

- Coulomb gauge ($\lambda = 0$) Coulomb + Linear pot. $\sigma \sim 2.3$ [GeV/fm]
- Landau gauge ($\lambda = 1$) No linear part $\sigma \sim 0$ [GeV/fm]
- large gap between
 Landau and Coulomb
- $\lambda = 1 \rightarrow 0$ potential is changing continuously

Instantaneous Potential Analysis

Coulomb plus linear functional form

$$V(R) = -\frac{A}{R} + \sigma R + \text{Const.}$$

- Landau and Coulomb gauge is connected continuously
- Coulomb + linear pot. works well for R < 0.8 fm

String Tension in the Generalized Landau Gauge

String tension of the instantaneous potential

• Coulomb gauge ($\lambda=0$) $\Rightarrow\sigma\sim2.5\sigma_{
m phys}$ over confinement

• Landau gauge
$$(\lambda=1) \Rightarrow \sigma \sim 0$$
 no linear part

• drastically changing near the Coulomb gauge $(\lambda \sim 0.1 \rightarrow 0)$

String Tension in the Generalized Landau Gauge

String tension of the instantaneous potential

• Coulomb gauge ($\lambda=0$) $\Rightarrow\sigma\sim2.5\sigma_{
m phys}$ over confinement

• Landau gauge
$$(\lambda=1) \Rightarrow \sigma \sim 0$$
 no linear part

• drastically changing near the Coulomb gauge $(\lambda \sim 0.1 \rightarrow 0)$

•
$$\lambda_C \sim 0.02$$

 $\sigma(\lambda) \simeq \sigma_{\text{phys}}$

String Tension in the Generalized Landau Gauge

String tension of the instantaneous potential

• Coulomb gauge ($\lambda=0$) $\Rightarrow\sigma\sim2.5\sigma_{
m phys}$ over confinement

• Landau gauge $(\lambda = 1) \Rightarrow \sigma \sim 0$ no linear part

• drastically changing near the Coulomb gauge $(\lambda \sim 0.1 \rightarrow 0)$

•
$$\lambda_C \sim 0.02$$

 $\sigma(\lambda) \simeq \sigma_{\text{phys}}$

 in λ_C gauge instantaneous potential reproduces the physical interquark potential

λ_C gauge

in λ_C gauge

instantaneous potential reproduces the physical interquark potential

T-length Potential

$$V(R) \equiv -\frac{1}{a} \log \operatorname{Tr} \langle U_4(\vec{x}, a) U_4^{\dagger}(\vec{y}, a) \rangle, \quad R = |\vec{x} - \vec{y}|$$

T-length Potential in the Coulomb Gauge

T-length potential

$$V(R,T) \equiv -\frac{1}{T} \log \operatorname{Tr} \langle L(\vec{x},T) L^{\dagger}(\vec{y},T) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

$T\mbox{-length}$ Potential in the Coulomb Gauge

T-length potential

$$V(R,T) \equiv -\frac{1}{T} \log \operatorname{Tr} \langle L(\vec{x},T) L^{\dagger}(\vec{y},T) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

T-length Potential in the Coulomb Gauge

T-length potential

$$V(R,T) \equiv -\frac{1}{T} \log \operatorname{Tr} \langle L(\vec{x},T) L^{\dagger}(\vec{y},T) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

• Coulomb + linear

for SU(2) Coulomb gauge J.Greensite, S.Olejnik, PRD.67, 094503(2003).

$T\mbox{-length}$ Potential in the Coulomb Gauge

T-length potential

$$V(R,T) \equiv -\frac{1}{T} \log \operatorname{Tr} \langle L(\vec{x},T) L^{\dagger}(\vec{y},T) \rangle, \qquad R = |\vec{x} - \vec{y}|$$

$T\mbox{-length}$ String Tension in the Generalized Landau Gauge

T-length potential analysis

$$V_{\lambda}(R,T) = -\frac{A_{\lambda}(T)}{R} + \sigma_{\lambda}(T)R + \text{Const.}$$

T-length String Tension in the Generalized Landau Gauge

T-length potential analysis

$$V_{\lambda}(R,T) = -\frac{A_{\lambda}(T)}{R} + \sigma_{\lambda}(T)R + \text{Const.}$$

• Near the Coulomb gauge $(\lambda \sim 0)$ $\sigma_{\lambda}(T) \rightarrow \sigma_{phys}$ $T \sim 1$ [fm]

T-length String Tension in the Generalized Landau Gauge

T-length potential analysis

$$V_{\lambda}(R,T) = -\frac{A_{\lambda}(T)}{R} + \sigma_{\lambda}(T)R + \text{Const.}$$

We have analyzed the instantaneous potential in the generalized Landau gauge (λ -gauge)

- The potential changes continuously from Landau toward Coulomb gauge.
- Coulomb + linear ($V(R) = -A/R + \sigma R + \text{Const.}$)
- String tension is drastically changed near the Coulomb gauge.
- In specified λ -parameter, physical interquark potential is reproduced

We also have analyzed *T*-length potential.

- Coulomb + linear potential also works well.
- The asymptotic value seems to coincide with the physical value near the Coulomb gauge.