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Introduction (2)

» Scattering phases are calculable in lattice QCD by Luscher’ s finite volume method.
However, its standard use is restricted to the elastic region. Several works exist to go
above the inelastic threshold.

S. He, et al., JHEP0507, 011 (2005).
M.Lage, et al., PLB681, 439 (2009).

» To go above inelastic thresholds, we have to struggle with a problem, i.e.,

@ Degeneracy with respect to different incomming states in the infinite volume
disappears in a finite volume with cubic boundary condition.
Ex) NA(I=1/2) above the N 2 threshold

A A

WA
my+ms s (0 |E2>
my+m A

0 There are no obvious relations between
INA in>, [N Z in> in infinite volume and IE,>, |[E,> in finite volume

O If we stick to a single energy in a finite volume,
number of equations are less than needed in order to obtain the S—matrix.

» We propose to avoid this problem by extending HAL-QCD method to construct
the interaction potential (single channel) to the coupled channel version.



NA-N2 coupled system (3)

To be specific, we consider N/A-N 2 coupled system (I=1/2)
my ~ 940 MeV (I=1/2)
my~ 1115 MeV (1=0) 0
ms~ 1190 MeV (=1)

my+rma+m 2195 MeV

my<my <msy A

To simplify, we treat them as bosons. my+Hmy : 2130 MeV

my+tmp 22055 MeV

We first consider it in infinite volume.

We then proceed to finite volume.



Bethe—Salpeter (BS) wave functions [infinite volume] ¥

> (equal-time) BS wave functions associated with [N/ ,in> and |N X ,in> incomming states

{(0 | N(X)A(0) [ N(P)A(=P),In) {(0 | N(X)A(0)[N(G)Z(-q),In)
(OIN(X)Z(0) | N(P)A(=P),In) (O N(X)Z(0) | N(a)=(=0), In)

N(x), A\ (x), 2 (x): local composite interpolating fields for N, A\, 2

» Their long distance behavior are derived similarly as single channel case:

C.—J.D.Lin et al.,NPB619, 467 (2001).
CP-PACS Coll., PRD71, 094504 (2005).
S.Aoki et al., PTP123, 89 (2010).

For instance,
€& NA-N/A BS wave function

This is related to T—matrix
O] N()‘(’)A(O)| N (B)A(=p),in) ﬁ through reduction formula
K K |

I(2 )2E (k)" : ANE[2O) URACP)IN

o [ AL L L T(NK)AK) N(B)A(-p)) e** J
(27)°2E,(K) E,(K)-E,(K)+E, (D) +E,(P) Ey(K)+E,(K)~Ey(B)—E,(p)ic
1/2=1/2 ip-X /11/2 y N THIA r
=L\ L, e+ & rsn n )TNA,NA(S)ep—rj the Kallen function

AXY,2) =X+ y* +2° —2xy —2yz — 22X




Helmholtz equation at long distance [infinite volume] ©

E=fmi +p7 +Jm2 + p7 = Jm? + @7 +fm2 + @

» BS wave functions at long distance

( o 1/2 2 2 ipr
Vs (GE) = Z.72Z,0N(OAQ) N(DIA(-P), i) ~ 7 44— M) T )+
3
1/2 2 2 iqr
Vs (GE) =272 0 NRZO) IN(BAC-p)iny ~ 2 (S’mN'mz)TNz,NA(s)Z_ﬁ“‘
( 1/2 2 2 ipr
Vs (GE) =272 OINOAQ) IN@E(-a)in) ~ 2 (S’mN’mA)TNA,Ms)Z_r*“'
3
3 1/2 2 2 iqr
s (% E) = 2,220 N(R)Z(0) | N(@)Z(-) i) ~ €7 +7 (S’mN’mz)TNz,Nz<s)eq_r+“‘

> Helmholtz eq. is satisfied by BS wave functions at long distance (|x| >> R).

IX|>>R
(V2 + P )W ama (K E) = Ky ya (K5 E) Kuana (X E)~0
(62 + qz)‘//Nz,NA (X;E) = KNZ,NA()_C E) | > KNE,NA(X; E) ~0
® Propagating degrees of
(?2 + pZ)WNA,NZ()_(; E) =Ky, ns (X E) freedoms are filtered out. KNA'NZ()‘(’; E)~0

L, ~ ~ =» K(x,E) is a localized object. .
(V o+ 0) Wy (G E) = Kyg n: (X E) _ o Kyzns (X E) ~0
® Helmholtz eq. is satisfied |x|>>R.



Energy—independent, non—local interaction kernel [infinite volume] ©

> For |x| =R, K does not vanish. We wish to factorize K such that

KNA,NA()_(; E)= J.dgyUNA,NA(X! y) WNA,NA(V; E) +Id3yUNA,Nz(X’ y) WNz,NA(y; E)
KNZ,NA()_(; E)= J'dSyUNZ,NA()?’ y) WNA,NA(V; E) +J‘d3yUNE,NZ()_(” y) l//NZ,NA(y; E)

Knans (X;E) = jdgyUNA,NA(X’ y) WNA,Nz(y; E) +jd3yUNA,NZ(X’ y) WNz,Nz(y; E)
KNE,NZ()_(; E)= J.dgyUNE,NA()_(” y) WNA,Nz(y; E) +Id3yUNz,Nz(X1 y) WNZ,Nz(y; E)

U(x,y) denotes E-independent and non—local interaction kernel.

» These relations are compactly written as

|:KNA,NA()_(>; E) KNA,NE()_(; E)} _ J‘dg {U NA,NA()_(’ y) UNA,NZ()_(’ y):H:WNA,NA()_c E) WNA,NZ(X; E)}
X, Y)

KNZ,NA(X;E) KNE,NZ(X;E) UNZ,NA()_(”V) UNz,Nz( WNZ,NA(X;E) WNZ,NZ(X;E)



Energy—independent, non—local interaction kernel (2) [infinite volume]

» The factorization is possible.

€ Assume that BS wave functions are linearly independent, .i.e.,

Viana (K E @) | W (KE, @) (o is to distinguish states with same E).
WNZ,NA(X; E ) ‘//Nz,Nz()_c E )

BS wave functions have a “left inverse” as an intergration operator as
J‘dsy Viana (GEL @) v (XK ELa) _|:V/NA,NA(7(; E.a) vyans(XE )
Vs ia (GEL Q) s e (GE @) [ Wnena (K E @) Wz s (X E @)

@ Factorization is possible

KNA,NA()—(;E’a) KNA,NZ()_(;Eia)
KNZ,NA(X;E1a) KNZNZ()_(;E’a)

_ZJ |: NANA(X E' CZ) *:|J-d3 |:';V|\|ANA(y E’ CX) ::|_|:WNA,NAiy;E,a) ::|

:J‘d3 UNA,NA()_(”V) UNA,NZ()_(’V).WNA,NA(V;E!a) l//NA,NZ(y;Eia)
UNZ,NA(X'V) UNZ,NZ(X’V) WNz,NA(y;E’a) ‘//Nz,Nz(y;Eaa)

} — (27)8(E-E"S, ,

@ Here, we defined the E-independent and non—local interaction kernel U

|:UNANA(Xy *} ZJ‘ { NANA(XE a’) *:|_|:l;NA,NA(y;EI1a') *}




Energy—independent, non—local interaction kernel (2) [infinite volume] ©

» The factorization is possible.

Comments:

€ Assume that BS wal
{ |:l//NA (X E,a)} € U does not depend on a particular value of E.

< E (U is constructed by integrating over E. U is an averaged object)
Wiz (X E @)

. € U is most generally a non—local integration operator.
BS wave functions |

~ B @ The factorization is possible
J‘dsy Viana (X E with E-independent and non—local interaction kenel U.
Wusna (GES{  (But U may not be unique.)

@ Factorization is possible

KNA,NA()—(;E’a) KNA,NZ()_(;Eia)
KNZ,NA(X;E1a) KNZNZ()_(;E’Q)

_ZJ' { NANA(X E'a') *]‘-ds |:WNANA(y E''a') ::|_|:WNA,NAE§;;E,CZ) :}

:J‘d3 UNA,NA()_(’V) UNA,NZ()_(’V).WNA,NA(V;E!a) l//NA,NZ(y;E!a)
UNZ,NA(X'V) UNZ,NZ(X’V) WNZ,NA(V;E’a) ‘//Nz,Nz(y;Eaa)

@ Here, we defined the E-independent and non—local interaction kernel U

|:UNANA(Xy *} ZJ‘ { NANA(XE a’) *:|_|:l;NA,NA(y;EI1a') *}




An effective Schrodinger equation (coupled channel version) [infinite volume] ©

» Combining the results so far, we arrive at
An effective Schrodinger eq. (coupled channel version)

(62 + pé)‘//NA()_(; E)= J.dByUNA,NA()_(’ V)wa (Y E) +J.d3yUNA,NZ (X, V) w = (V: E)
(62 + qé)WNZ (X;E) = J.dsyUNZ,NA(X’ V)wa (Y E) +Jd3yUNz,Nz(i1 V) (Y5 E)
E :\/m,i + Bl ++/MZ + B =\/m§, +0Gg” +/m; + 0

» At each E, this coupled equation generates the following BS wave function as solutions,
which contain T-matrix of QCD in their long distance parts.

( o 1/2 2 2 ipr
Vs (5B) = 2,72 (0 NRIA(Q)  N(IAG) iny = 697 + 25T ) T )+
3

1/2 2 2 iqr
Ve (RiE) =22 OINIEO) NP iny - 2T ) Tusa ()
( 1/2 2 2 ipr
s KBV =22 OINDAO IN@ECm - ST 7 | (..
4 - o 11/2(5 m2 mZ) eiqr
Vi (6 B) = 22O IN(DZ(O) N@Z(-0).in) =7 + === AT (8)- -

» T—matrix of QCD is obtained by solving this coupled effective Schrodinger equation,
once the E—independent and non—local interaction kernel U has been constructed.



Construction of the interaction kernel U in the finite volume [finite volume] (19

> Choose a sufficiently large L > R/2) so as not to modify the internal region.

> Derivative expansion (an approximate construction of the E-independent and non—local
interaction kernel.) For simplicity, keep only the local contribution.

Upann (% 9) = Vypua (R) - 8° (X = 9), ete.

» BS wave functions for two energy eigenstate E=E; and E,. (variational method)

lowest-lying state 15t excited state
v (K Ey) = 222 Y2 (0| N(R)A(0) | E,) Wy (% E) =222 (0I N(X)A(0) | Ey)
v (X E)) = Z¥2Z2(0 | N(R)Z(0) | E,) vy (X E) =Z"Z;" (0 N(X)Z(0) | E,)

» These BS wave functions should satisfy the coupled effective Schrodinger eq.
(62 + piz) W (X ) :VNA,NA()_() W (X E) +Vyanz (X)w s (X ;) (i=0,1)
(VZ + qiz) Wns (X; Ei) = VNZ,NA (X) Wna (X; E, ) +VNZ,NZ (X) Vs (X; Ei)

Ei :\/mri +Ei2 +\/mi+ﬁi2 :\/mli +qi2 +\/m§+qi2

> Solve this coupled equations (i=0,1) back for the interaction kernels
by inserting the BS wave functions. (4 unknown from 4 equations)

» It is important to examine the convergence of derivative expansion.



Construction of the interaction kernel U in the finite volume [finite volume] (D

> Choose a sufficient

» Derivative expansio
interaction kernel.)

UNA,NA()_(l y) = {\/

> BS wave functions

lowest—lying state

Waa (X Ep) = Zﬁj

wys (X Ep) = Zﬁj

Comments:

Once it is constructed on the lattice,
&€ take the infinite volume limit

@ solve the coupled effective Schrodinger equation
iIn the infinite volume to reconstruct T—matrix.

€@ The resulting T-matrix interpolates the QCD T—matrix
which was originally contained in the BS wave functions.

» These BS wave functions should satisfy the coupled effective Schrodinger eq.

(62 + piz)l//NA (X;E;) :VNA,NA()_() W (X E) +VNA,NZ(X) Vs (X E) (i=0,1)
(VZ + qiz)l//NZ (X; Ei) :VNZ,NA (X) Wna (X; Ei) +VNZ,NZ (X) l//NZ()_(; Ei)

Ei :\/mri +Ei2 +\/mi+ﬁi2 z\/mil "‘qiz"'\/m;"'qiz

> Solve this coupled equations (i=0,1) back for the interaction kernels
by inserting the BS wave functions. (4 unknown from 4 equations)

» It is important to examine the convergence of derivative expansion.




The point (12)

» How our method avoids the problem, which was mentioned in the introduction

A A

o | e
S

my+HM A

» If we stick to a single energy eigen state in the finite volume,
all we can do is to impose a constraint on the S—matrix.

(It is not easy to obtain each S—matrix element separately.)
S.He et al., JHEP0507, 011 (2004).

» In our method, the key role is played by the E-independent, non—local interaction kernel.

(62 + piz)WNA()_c E.) :VNA,NA()_() Waa (X E) +VNA,NZ(X) Wys (X )
(VZ + qiz)l)”NZ (X;E;) :VNZ,NA (X)wua (K Ep) +VN2,NZ (X) v\ (X )
[LO derivative expansion]

@ It gathers the information scattered around different energies in finite volume.

€@ Reconstruction of T-matrix is performed
by using the coupled effective Schrodinger equation in infinite volume.

@ The reconstructed T—-matrix is an interpolation of the T-matrix contained in
the BS wave functions generated by lattice QCD.
(Interpolation is performed by E-independent, non—local interaction kernel.)



Summary (13)

» We have proposed a new method to calculate T-matrix of QCD above inelastic
thresholds.

> In our method,

€ E-independent and non—local interaction kernel plays a key role.
It gathers information scattered around different energies to calculate S—matrix.
€ Numerically, the most challenging part is the variational method for BS wave
functions of excited states.
This turns out to be feasible. [K.Sasaki at previous session]

> Outlook

@ The method can be applied to more complicated systems suchas A A-N=--2 2
coupled system. [K.Sasaki at previous session].

@ The method may be also applied to much more complicated systems such as
NN-NN 7t coupled system and NK-NK 7t coupled system. (& future plan)

However, once three hadron BS wave function is involved, numerical cost becomes
huge. [T.Doi at previous session]

€ The method can be, in principle, applied to NKba— 2 71 coupled system for /A (1405).
However, it is so far challenging to obtain BS wave function with annihilation diagram
(sink). [Efficient algorithm has to be developed.]



