# Lattice QCD with Optimal Domain-Wall Fermions: Light Meson Spectroscopy

Ting-Wai Chiu (趙挺偉)

Physics Department and Center for Quantum Science and Engineering (CQSE) National Taiwan University, Taipei, Taiwan

Collaborators: Tian-Shin Guu (NIU), Tung-Han Hsieh (AS), Chao-Hsi Huang (NIU), Yao-Yuan Mao (NTU), Kenji Ogawa (NTU)

June 14, 2010, Lattice 2010

### **Outlines**

- Overview of TWQCD's DWF project
- Optimal Domain-Wall Fermion
- Some Benchmarks for CG with DWF
- Physical Results of Pseudoscalar Meson
- Conclusion and Outlook

#### An Overview of TWQCD's Unquenched Simulations

- Lattice Size:  $16^3 \times 32 \times 16 (N_s)$
- Fermion Action: Optimal Domain-Wall Fermion [TWC, PRL, 90, 071601(2003)]
- Gauge Action: (a) Iwasaki (beta=2.20)
   (b) Plaquette (beta=5.90)
- N<sub>f</sub> = 2/(2+1) for both (a) Iwasaki (beta=2.20)
   (b) Plaquette (beta=5.90)
- Setting the scale: (i) Sommer parameter,  $r_0=0.49$  [fm] (ii)  $f_{\pi} = 131$  MeV

#### An Overview (cont.)

 Lattice Spacings (N<sub>f</sub> = 2): 0.137(4)[fm], Iwasaki (beta=2.20) 0.125(3)[fm], Plaq. (beta=5.90)

> 1/a = 1.464(34)[GeV], Iwasaki (beta=2.20) 1.590(38)[GeV], Plaq. (beta=5.90)

- Lattice Volume:  $> (2 \text{ fm})^3$
- Pion Masses [MeV] (N<sub>f</sub> = 2):

(a) Iwasaki (beta=2.20):

157(9), 190(10), 219(12), 245(13), 265(15), 285(16), 297(17), 312(18)

```
(b) Plaquette (beta=5.90)
```

206(10), 252(15), 292(16), 331(15), 360(17), 384(17), 406(18), 428(19)



(a) Iwasaki (beta=2.20)

For  $N_f = 2$ , each mass has 5300-5500 accepted traj. After discarding 300 traj. for thermalization, measurements are performed every 20 traj., with a total of 250 confs.

For  $N_f = 2+1$ , each mass has 2800 accepted traj. After discarding 300 traj. for thermalization, measurements are performed every 10 traj., with a total of 250 confs.

(b) Plaquette (beta=5.90)

For  $N_f = 2$ , the statistics are the same as (a). For  $N_f = 2+1$ , simulations are still on-going.

#### The Hardware of TWQCD

- 16 units of Nvidia Tesla S1070 (total 64 GPUs, 64 x 4 GB) connected to 16 servers (total 48 Intel QC Xeon, 16 x 32 GB)
- 32 Nvidia C1060 (total 32 GPUs, 32 x 4 GB), connected to 16 servers (total 16 Intel i7, 32 x 12 GB)
- 122 Nvidia GTX285 (total 122 GPUs, 122 x 2/1 GB), connected to 62 servers (total 62 Intel i7, 62 x 12 GB)
- 6 Nvidia GTX480 (total 6 GPUs, 6 x 1.5 GB), connected to 6 servers (total 6 Intel i7, 6 x 12 GB)
- Hard disk storage > 300 TB, Lustre cluster file system
- Peak performance is **220 TFLOPS**
- Developed efficient CUDA codes for unquenched LQCD.
   232/180/132 Gflops for GTX480/GTX285/T10
- Attaining 36 TFLOPS (sustained) for LQCD with Optimal DWF

#### The GPU Cluster of TWQCD (a snapshot of some nodes)



T.W. Chiu, June 14, Lattice 2010.

#### Salient Features of TWQCD's DWF Simulation

- HMC with Multiple Time Scale Integration and Mass Preconditioning
- Omelyan Integrator for the Molecular Dynamics
- High Precision of Chiral Symmetry is attained with Optimal DWF
- Even-Odd Preconditioning for the 4D Wilson-Dirac Quark Matrix
- Conjugate Gradient with Mixed Precision on GPU (See Y.Y. Mao's talk in Parallel 54, Friday, June 18, 17:00)
- Topological Sectors are sampled ergodically (See T.H. Hsieh's talk in Parallel 24, Tuesday, June 15, 12:10)
- A New Algorithm for Simulating One Flavor [TWQCD: arXiv:0911.5532] HMC simulation of 1-flavor is faster than 2-flavors with the same mass

#### **Optimal Domain-Wall Fermion**

$$[ \text{TWC, Phys. Rev. Lett. 90 (2003) 071601 } ]$$

$$A_{\text{odwf}} = \sum_{s,s'=1}^{N_s} \sum_{x,x'} \overline{\psi}_{x,s} \Big[ (I + \omega_s D_w)_{x,x'} \delta_{s,s'} - (I - \omega_s D_w)_{x,x'} (P_- \delta_{s',s+1} + P_+ \delta_{s',s-1}) \Big] \psi_{x',s'}$$

$$\equiv \overline{\Psi} D_{\text{odwf}} \Psi \qquad D_w = \sum_{\mu=1}^4 \gamma_\mu t_\mu + W - m_0, \quad m_0 \in (0,2)$$

$$t_\mu(x,x') = \frac{1}{2} \Big[ U_\mu(x) \delta_{x',x+\mu} - U_\mu^{\dagger}(x') \delta_{x',x-\mu} \Big]$$

$$W(x,x') = \sum_{\mu=1}^4 \frac{1}{2} \Big[ 2\delta_{x,x'} - U_\mu(x) \delta_{x',x+\mu} - U_\mu^{\dagger}(x') \delta_{x',x-\mu} \Big]$$

with boundary conditions

$$P_{+}\psi(x,0) = -\frac{m_q}{2m_0}P_{+}\psi(x,N_s), \qquad m_q : \text{quark mass}$$
$$P_{-}\psi(x,N_s+1) = -\frac{m_q}{2m_0}P_{-}\psi(x,1)$$

#### Optimal Domain-Wall Fermion (cont.)

The weights  $\{\omega_s\}$  are fixed such that the effective 4D Dirac operator possesses the optimal chiral symmetry,

$$\omega_{s} = \frac{1}{\lambda_{\min}} \sqrt{1 - \kappa'^{2} s n^{2} \left( v_{s}; \kappa' \right)}, \quad s = 1, \cdots, N_{s}$$

where  $sn(v_s;\kappa')$  is the Jacobian elliptic function with argument  $v_s$ and modulus  $\kappa' = \sqrt{1 - \lambda_{\min}^2 / \lambda_{\max}^2}$ ,  $\lambda_{\min}^2$  and  $\lambda_{\max}^2$  are lower and upper bounds of the eigenvalues of  $H_w^2$ 

The action for Pauli-Villars fields is similar to  $A_{odwf}$ 

$$A_{PV} = \sum_{s,s'=1}^{N_s} \sum_{x,x'} \bar{\phi}_{x,s} \Big[ \big( I + \omega_s D_w \big)_{x,x'} \,\delta_{s,s'} - \big( I - \omega_s D_w \big)_{x,x'} \big( P_- \delta_{s',s+1} + P_+ \delta_{s',s-1} \big) \Big] \phi_{x',s'} \Big]$$

but with boundary conditions:  $P_+\phi(x,0) = -P_+\phi(x,N_s)$ ,  $m_{PV} = 2m_0$  $P_-\phi(x,N_s+1) = -P_-\phi(x,1)$ 

#### **Optimal Domain-Wall Fermion (cont.)**

$$\int [d\overline{\psi}] [d\psi] [d\overline{\phi}] [d\phi] \exp(-A_{\text{odwf}} - A_{\text{PV}}) = \det D(m_q)$$

The effective 4D Dirac operator



(1847 - 1878)

$$D(m_q) = m_q + (m_0 - m_q/2) [1 + \gamma_5 S_{opt} (H_w)]$$

$$S_{opt} (H_w) = \frac{1 - \prod_{s=1}^{N_s} T_s}{1 + \prod_{s=1}^{N_s} T_s}, \quad T_s = \frac{1 - \omega_s H_w}{1 + \omega_s H_w}$$

$$= \begin{cases} H_w R_Z^{(n,n)} (H_w^2), & N_s = \text{odd} \\ H_w R_Z^{(n-1,n)} (H_w^2), & N_s = \text{even} \end{cases}$$

$$I$$
Zolotarev optimal rational approx. for  $\frac{1}{\sqrt{H_w^2}}$ 

#### The salient feature of Optimal Rational Approximation

Has(n+m+2) alternate change of sign in  $[x_{\min}, x_{\max}]$ , and attains its max. and min. (all with equal magnitude)

In the figure, n = m = 6, it has 14 alternate change of sign in [1,1000]



#### **Even-Odd Preconditioning of ODWF Matrix**

$$\begin{split} \begin{bmatrix} D_{\text{odwf}} \end{bmatrix}_{x,s;x',s'} &= \left(I + \omega_s D_w\right)_{x,x'} \delta_{s,s'} - \left(I - \omega_s D_w\right)_{x,x'} \left(P_- \delta_{s',s+1} + P_+ \delta_{s',s-1}\right) \\ &= \begin{pmatrix} X & D_w^{eo} Y \\ D_w^{oe} Y & X \end{pmatrix} \\ Y_{s,s'} &= \omega_s (I + L)_{s,s'} \\ X_{s,s'} &= (4 - m_0) \omega_s (I + L)_{s,s'} + (I - L)_{s,s'} \\ L_{s,s'} &= P_- \delta_{s',s+1} + P_+ \delta_{s',s-1} \end{split}$$
  
with boundary conditions:  $P_- L_{N_s,s'} = -\frac{m_q}{2m_0} P_- \delta_{s',1}$ 

$$P_{+}L_{1,s'} = -\frac{m_q}{2m_0}P_{+}\delta_{s',N_s}$$

#### Even-Odd Preconditioning of ODWF Matrix (cont.)

$$\begin{pmatrix} X & D_w^{eo}Y \\ D_w^{oe}Y & X \end{pmatrix} = \begin{pmatrix} I & 0 \\ D_w^{oe}YX^{-1} & I \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & X - D_w^{oe}YX^{-1}D_w^{eo}Y \end{pmatrix} \begin{pmatrix} I & X^{-1}D_w^{eo}Y \\ 0 & I \end{pmatrix}$$

$$\uparrow$$
Schur complement

$$\det D_{\text{odwf}} \Rightarrow \det(I - D_w^{oe}YX^{-1}D_w^{eo}YX^{-1}) = \det C$$

$$C \equiv I - D_w^{oe} Y X^{-1} D_w^{eo} Y X^{-1}$$

For 2-flavors QCD, the pseudofermion action is

$$A_{PF} = \phi^{\dagger} C_{PV}^{\dagger} (CC^{\dagger})^{-1} C_{PV} \phi$$

$$C_{PV} \equiv C(m_q = 2m_0)$$

T.W. Chiu, June 14, Lattice 2010.

### **Comparing Different DWF Fermions**

(See Yao-Yuan Mao's talk in Parallel 54, Friday, June 18, 17:00)

|           | <b>ODWF</b><br>Ns = 16 | Borici<br>Ns = 16 | DWF<br>Ns = 16 | ODWF<br>Ns = 32 | Borici<br>Ns = 32 | <b>DWF</b><br>Ns = 32 |
|-----------|------------------------|-------------------|----------------|-----------------|-------------------|-----------------------|
| GTX 285   | 173                    | 167               | 160            |                 |                   |                       |
| GTX 480 * | 230                    | 225               | 217            |                 |                   |                       |
| C1060     | 131                    | 128               | 124            | 154             | 154               | 153                   |
| C2050 *   | 148                    | 144               | 139            | 170             | 167               | 163                   |
| GTX 285   | 320                    | 85                | 45             |                 |                   |                       |
| GTX 480 * | 242                    | 63                | 33             |                 |                   |                       |
| C1060     | 421                    | 111               | 58             | 1347            | 518               | 300                   |
| C2050 *   | 374                    | 99                | 51             | 1220            | 478               | 281                   |

upper: Gflops / lower: time(s)

### Comparing Different DWF fermions (cont.)

◆ 2-flavors QCD with plaquette gauge action on 16<sup>3</sup> x 32 lattice, for one CG (with reliable updates) in HMC,  $m_{\pi} ≈ 300$ MeV

|                           | <b>ODWF</b>               | Borici                    | <b>DWF</b>                | <b>ODWF</b>                | Borici                     | <b>DWF</b>                |
|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|---------------------------|
|                           | Ns = 16                   | Ns = 16                   | Ns = 16                   | Ns = 32                    | Ns = 32                    | Ns = 32                   |
| Sign<br>Function<br>Error | ≈ <b>10</b> <sup>-7</sup> | ≈ <b>10</b> <sup>-4</sup> | ≈ <b>10</b> <sup>-4</sup> | ≈ <b>10</b> <sup>-10</sup> | ≈ <b>10</b> - <sup>6</sup> | ≈ <b>10</b> <sup>-6</sup> |



#### **Topological Susceptibility**

(See Tung-Han Hsieh's talk in Parallel 24, on Tuesday, June 15, 12:10)



Fitting to  $\chi_{t} = \Sigma \left( m_{u}^{-1} + m_{d}^{-1} \right)^{-1} \Rightarrow \Sigma^{\overline{MS}} (2 \text{ GeV}) = \left[ 247(11)(12) \text{MeV} \right]^{3}$  (preliminary)

### Pseudoscalar Meson

$$\langle 0 | \pi^{-}(\vec{x},t)\pi^{+}(0,0) | 0 \rangle = -\langle 0 | (\vec{u}\gamma_{5}d)(\vec{x},t)(\vec{d}\gamma_{5}u)(\vec{0},0) | 0 \rangle$$
  
= Tr  $\{ (D_{c} + m_{u})^{-1}(0,x)\gamma_{5}(D_{c} + m_{d})^{-1}(x,0)\gamma_{5} \}$   
= Tr  $\{ [(D_{c} + m_{u})^{-1}(0,x)]^{\dagger}(D_{c} + m_{d})^{-1}(x,0) \}$ 

Fitting 
$$C_{\pi}(t) = \sum_{\vec{x}} \langle 0 | \pi^{-}(\vec{x}, t) \pi^{+}(0, 0) | 0 \rangle$$
 to  

$$\frac{\left| \langle \pi^{+}(\vec{0}) | \pi^{-}(0, 0) | 0 \rangle \right|^{2}}{2m_{\pi}} \left( e^{-m_{\pi}t} + e^{-m_{\pi}(T-t)} \right) + \text{excited states}$$
to extract  $m_{\pi}$  and  $f_{\pi} = \frac{(m_{u} + m_{d})}{m_{\pi}^{2}} \left| \langle \pi^{+}(\vec{k}) | \pi^{-}(0, 0) | 0 \rangle \right|$ 

### Physical Results of Pseudoscalar Meson



T.W. Chiu, June 14, Lattice 2010.

### Physical Results of Pseudoscalar Meson (cont.)



T.W. Chiu, June 14, Lattice 2010.

### Physical Results of Pseudoscalar Meson (cont.)

- f = 0.1221(42) GeV
- B = 1.5488(812) GeV

 $Z_m^{\overline{\text{MS}}}(2 \text{ GeV}) = 0.76(1)(2) \text{ [NPR, RI/MOM]}$ 

$$\Sigma = \frac{Bf^2}{2} \Longrightarrow \Sigma^{\overline{MS}}(2 \text{ GeV}) = [248(7)(2)\text{MeV}]^3$$

At 
$$m_q = 0.0061(5)$$
 GeV,  $m_\pi = 0.135$  GeV,  
 $f_\pi = 131.4(3.5)$  MeV

 $m_{ud}^{\rm MS}(2 \text{ GeV}) = 4.6(0.5)(0.1) \text{MeV}$ 

## **Conclusion and Outlook**

- Optimal Domain-Wall Fermion provides a viable framework to simulate unquenched QCD with exact chiral symmetry.
- First physical results of pseudoscalar meson for 2-flavors QCD are in good agreement with NLO ChPT, and provide a determination of the following physical quantities:

$$\Sigma^{\overline{MS}}(2 \text{ GeV}) = [248(7)(2)\text{MeV}]^3$$
  
$$f_{\pi} = 131.4(3.5) \text{ MeV}$$
  
$$m_{ud}^{\overline{MS}}(2 \text{ GeV}) = 4.6(0.5)(0.1)\text{MeV}$$

# **Conclusion and Outlook (cont.)**

- Our novel one-flavor algorithm provides an efficient way to simulate (2+1)-flavors, (2+1+1)-flavors, (1+1+1+1)-flavors QCD with exact chiral symmetry, as well as for any vector gauge theory with an arbitrary number of flavors.
- Simulations of (2+1)-flavors QCD are on-going, which will be completed soon, and the new confs will provide new physical results.
- All-to-all quark propagators will be computed for physical quantities involving disconnected diagrams, with LMP and LMA.