A study of $\mathcal{N}=2$ Landau-Ginzburg model by lattice simulation based on a Nicolai map

based on arXiv:1005.4671

Hiroki Kawai (in collaboration with Y.Kikukawa) Institute of Physics, The University of Tokyo

Outline

1. Purpose of this study

2.Lattice formulation of WZ model

3.Simulation Method

4.Numerical results

5. Summary and future plan

1 Purpose

2d $\mathcal{N}=2$ Landau-Ginzburg model (LG model)

$$S = \int d^2x d^4\theta \, K(\Phi, \bar{\Phi}) + \left(\int d^2x d^2\theta \, W(\Phi) + c.c. \right)$$

 $\Phi \dots \text{ chiral superfield}$

 $\begin{array}{l} \underline{\text{At the IR fixed point}, W(\Phi) = \lambda \Phi^k \text{ is believed to describe...}} \\ \hline \\ \Lambda_{\text{eff}} \rightarrow \infty, \text{ lattice !} \end{array} \qquad \begin{cases} \mathcal{N} = 2 \text{ minimal model } \leftarrow \text{check for } K(\Phi, \bar{\Phi}) = \bar{\Phi} \Phi \text{ (WZ model)} \\ \\ \hookrightarrow \text{ Gepner model (compactified string), ...} \end{cases} \end{cases}$

Why it is believed that LG models describe CFTs ?

2d bosonic case '86 A.B.Zamolodchikov

In the $c = 1 - \frac{6}{p(p+1)}$ minimal model, the fusion rule implies $\dots \phi_{(2,2)}^{2p-3} \propto \partial^2 \phi_{(2,2)}$ In the 2d bosonic LG model $\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial_\mu \phi + g \phi^{2p-2}$, EOM is $\dots \phi^{2p-3} \propto \partial^2 \phi$

$$\stackrel{\text{conjecture}}{\Rightarrow} \phi = \phi_{(2,2)}$$
 at the IR fixed point.

How to check the conjecture

early studies

We computed **correlation functions** non-perturbatively for $W(\Phi) \propto \Phi^3$.

susceptibility of CFT: $\chi \equiv \int d^2x \langle \phi(x)\phi^*(0) \rangle \xrightarrow{\text{finite volume}} \int_V d^2x \frac{1}{|x|^{2h+2\bar{h}}} \propto V^{1-h-\bar{h}}$ $\Rightarrow \log \chi = \underbrace{(1-h-\bar{h})}_{/} \log V + \text{const.}$ For the present $W(\Phi) \propto \Phi^3$, $1-h-\bar{h} = 1 - \frac{1}{6} - \frac{1}{6} = 0.6666...$

Lattice Formulation of WZ model

 \mathcal{S}

Relying on the existence of the Nicolai map as the guiding principle,

'83 Sakai and Sakamoto '02 Catterall and Karamov

'02 Kikukawa and Nakayama

$$= \sum \left\{ \phi^* T \phi + W^* (1 - \frac{a^2}{4}T)W + \left(W'(-S_1 + iS_2)\phi + c.c. \right) + \bar{\psi} \left(D + \frac{1 + \gamma_3}{2}W'' \frac{1 + \gamma_3}{2} + \frac{1 - \gamma_3}{2}W'' \frac{1 - \gamma_3}{2} \right)\psi \right\}$$
where $D = \frac{1}{2} \left[1 + \frac{X}{\sqrt{X^\dagger X}} \right] = T + \gamma_1 S_1 + \gamma_2 S_2, \quad W = \frac{\lambda}{3} \Phi^3$

$$\left\{ \text{continuum limit } : a\lambda \to 0 \right\}$$

 \mathbf{i}

 λ is the unique mass parameter (besides a) $\Rightarrow \begin{cases} \text{Continuum matrix} & a\lambda \to 0 \\ \text{To see CFT, } L \gg (a\lambda)^{-1} \text{ is needed.} \end{cases} \overset{\circ}{=} 0$

no extra fine-tunings $\Leftarrow \begin{cases} & \text{one SUSY } Q & \leftarrow \text{Nicolai map} \\ & Z_3 \text{ R-symmetry } \leftarrow \text{overlap fermion} \end{cases}$

This lattice model faces the sign problem

|D+F| is real, but can be negative. $\Leftarrow \gamma_1(D+F)\gamma_1 = (D+F)^*$

3 Simulation Method

We utilized the Nicolai map : $\eta = W' + (\phi - \frac{a}{2}W')T + (\phi^* - \frac{a}{2}W^{*'})(S_1 + iS_2).$

$$\langle \mathcal{O} \rangle = \frac{\langle \sum_{i=1}^{N(\eta)} \mathcal{O}(\phi_i) \operatorname{sgn} | D + F(\phi_i) | \rangle_{\eta}}{\langle \sum_{i=1}^{N(\eta)} \operatorname{sgn} | D + F(\phi_i) | \rangle_{\eta}} \xrightarrow{a \to 0} \text{ Witten index } \Delta = 2 \text{ (cubic potential)}$$

where
$$\begin{cases} \langle X \rangle_{\eta} \equiv \frac{\int \mathcal{D}\eta \mathcal{D}\bar{\eta} |X| e^{-\sum_{x} |\eta|^{2}}}{\int \mathcal{D}\eta \mathcal{D}\bar{\eta} |e^{-\sum_{x} |\eta|^{2}}} \\ N(\eta) \text{ counts the solutions of the Nicolai map } \phi_{1}, ..., \phi_{N(\eta)} \end{cases}$$

- 1. Assigning $\{\eta, \eta^*\}$ as the standard normal distribution,
- 2. Solving the Nicolai map by the Newton-Raphson algorithm,
- 3. Sample the configurations of $\{\phi, \phi^*\}$.

advantage ... no autocorrelation difficulty $\dots N(\eta)$

Tests for the configurations

$$\langle \sum_{i=1}^{N(\eta)} \operatorname{sgn} | D + F | \rangle_{\eta} \xrightarrow{a \to 0}$$
 Witten index $\Delta = 2$ (cubic potential)

Why Witten index ?

 $\rightarrow \mathsf{P.B.C.} \& \text{ For } W(\Phi) = \frac{m}{2} \Phi^2 \left(\Delta = 1 \right), \ (\operatorname{Re} \eta, \operatorname{Im} \eta) = \left(\operatorname{Re} \phi, \operatorname{Im} \phi \right) \left(D + m(1 - \frac{a}{2}D) \right)$ $\rightarrow \text{ correctly normalized}$

Ward identities for $\langle \eta(x_1) \cdots \eta(x_m) \eta^*(y_1) \cdots \eta^*(y_n) \rangle$

From $Q\psi_+ = -\eta^*$, $Q\psi_- = -\eta$, $Q\eta = \frac{\delta}{\delta\psi_+}S$, $Q\eta^* = \frac{\delta}{\delta\psi_-}S$, $\langle Q(\cdots)\rangle = 0$, and the Schwinger-Dyson eq.,

$$\frac{\left\langle \eta(x_1)\cdots\eta^*(y_n)\sum_{i=1}^{N(\eta)}\operatorname{sgn}|D+F|\right\rangle_{\eta}}{\left\langle \sum_{i=1}^{N(\eta)}\operatorname{sgn}|D+F|\right\rangle_{\eta}} = \begin{cases} 0 & m\neq n\\ \sum_{\sigma}\Pi_{k=1}^m\delta_{x_k,y_{\sigma(k)}} & m=n. \end{cases}$$

For example, m = n = 1 provides $\langle S_B \rangle = L^2$.

$$\Rightarrow$$
 If $\sum_{i=1}^{N(\eta)} \operatorname{sgn} |D + F| = 2$ over the η , OK.

4 Numerical Results

Samples with $W(\Phi) = \frac{\lambda}{3} \Phi^3$, $a\lambda = 0.3$, L = 18, 20, ..., 32

(Newton iter. from 100 initial config. for each noise) × 320 noises

									-
L	18	20	22	24	26	28	30	32	test
(+,+)	316	319	319	316	316	314	307	316	$\sum \operatorname{son} D + F - 2$
(-,+,+,+)	3	0	1	3	4	6	10	4	$\sum \log D + 1 = 2$
(+)	1	1	0	0	0	0	1	0	\checkmark $\sum \operatorname{sgn} D + F \neq 2$
(+, +, +)	0	0	0	1	0	0	2	0	.but rare.
Δ	1.997	1.997	2	2.003	2	2	1.994	2	
δ [%]	0.3	0.0	0.1	0.4	0.4	0.4	0.4	0.2	-

$$\Delta$$
 ... Witten index, δ ... $rac{\langle S_B
angle - L^2}{L^2}$ (a Ward identity)

For 99% noises, $\sum_{i=1}^{N(\eta)} {\rm sgn} \; |D+F| = 2$

Witten index $\Delta = 2$ and Ward identities are well reproduced.

Susceptibility: $\chi_{\phi} \equiv \sum_{x \geq 3} \langle \phi(x)\phi(0) \rangle$ $W(\Phi) = \frac{\lambda}{3}\Phi^3$, $a\lambda = 0.3$, L = 18, 20, ..., 32

consistent with the conjecture $\chi_\phi \propto V^{0.666...}$

5 Summary and future plan

Summary

- We observed $\chi = \int_V dx^2 \langle \phi(x) \phi^*(0) \rangle$ in the cubic potential case, and got the consistent result with the conjecture $\chi \sim V^{0.660 \pm 0.011}$.
- We also extracted the effective coupling constant K of the Gaussian model, and obtained the consistent result with $K = \frac{3}{4\pi}$ which is a $\mathcal{N} = 2$ SUSY point. (see more detail in arXiv:1005.4671)

Future Plan

• further check of the A-D-E classification:

$$W = \Phi^4 \longrightarrow A_3 \text{ model } ?$$

$$\Phi^3 + \Phi'^4 \longrightarrow E_6 = A_2 \otimes A_3 \text{ model } ?$$

$$\Phi^2 + \Phi \Phi'^2 \longrightarrow D_3 \text{ model } ?$$

• c-function \rightarrow central charge

c-theorem

Case1. $W(\Phi) = \frac{\lambda}{3}\Phi^3$

(Newton method with 100 initial config. for each η) × 100 set

```
\lambda = 0.3, lattice size = 14 \times 14
```


全 noise で解は 2 個、全て fermion 行列式は正 (Δ =2 は再現) 4 × 4 ~ 20 × 20 で、解が 2 個でない noise は 1 %もなかった。 $N(\eta)$ = 2 と仮定して sample しました。