Non abelian Bianchi identities, monopoles and gauge invariance

C. Bonati¹ M. D'Elia² A. Di Giacomo¹ L. Lepori³ F. Pucci⁴

¹University of Pisa and INFN, Italy. ²University of Genova and INFN, Italy. ³SISSA and INFN, Italy. ⁴University of Firenze and INFN, Italy

> Lattice 2010 June 14-19 Villasimius, Sardinia, Italy

Outline

1 't Hooft tensor

- 2 NABI & ABI
- 3 Coleman observation
- 4 General consequences for Abelian Projections

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

5 Conclusions

└_'t Hooft tensor

't Hooft tensor

Definition

't Hooft tensor $F_{\mu\nu}$ is a gauge invariant tensor that in the unitary gauge coincides with the Abelian field strength of the residual U(1)

SU(N) case

A different 't Hooft tensor $F^a_{\mu\nu}$ can be associated to each of the fundamental weights ϕ^a_0 , $a = 1, \ldots, r$ (r = N - 1)

$$F^{a}_{\mu\nu} = \operatorname{Tr}(\phi^{a}G_{\mu\nu}) - \frac{i}{e}\operatorname{Tr}(\phi^{a}[D_{\mu}\phi^{a}, D_{\nu}\phi^{a}])$$

where $\phi^a = U(x)\phi_0^a U^{\dagger}(x)$

Del Debbio et al. hep-lat/0203023

└_'t Hooft tensor

't Hooft tensor

General group case

$$F^{a}_{\mu\nu} = \operatorname{Tr}(\phi^{a}G_{\mu\nu}) - \frac{i}{e}\sum_{I}^{\prime}\frac{1}{\lambda_{I}^{a}}\operatorname{Tr}(\phi^{a}[D_{\mu}\phi^{a}, D_{\nu}\phi^{a}]) + \\ -\frac{i}{e}\sum_{I\neq J}^{\prime}\frac{1}{\lambda_{I}^{a}\lambda_{J}^{a}}\operatorname{Tr}(\phi^{a}[[D_{\mu}\phi^{a}, \phi^{a}], [D_{\nu}\phi^{a}, \phi^{a}]]) + \\ -\cdots \\ \phi^{a}_{0} = \vec{c}^{a} \cdot \vec{H}, \quad \vec{c}^{a} \cdot \vec{\alpha}^{b} = \delta^{ab}, \quad \vec{\alpha}^{b} = \text{simple root}$$

$$\lambda_I^a = \{ (\vec{c}^a \cdot \vec{\alpha})^2 | \vec{\alpha} \in \text{root system} \}$$

Di Giacomo et al. JHEP10(2008) 096

Fundamental property

The 't Hooft tensor is always linear in the gauge field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Non Abelian Bianchi Identities

Definition

A violation of Non Abelian Bianchi Identities is by definition a non zero value of $J_\nu=D_\mu \tilde{G}_{\mu\nu}$

Gauge invariant content

By Coleman-Mandula theorem we can gauge-diagonalize all J_{ν} and fundamental weights ϕ_0^a are a basis for diagonal operators.

$$\operatorname{Tr}(\phi_0^a[D_\mu \tilde{G}_{\mu
u}]_{\operatorname{diag}}) = \operatorname{Tr}(\phi_0^a[J_\nu]_{\operatorname{diag}})$$

In a generic gauge $\phi^a = U(x)\phi_0^a U^{\dagger}(x)$ and

$$\operatorname{Tr}(\phi^{a}D_{\mu}\tilde{G}_{\mu\nu}) = \operatorname{Tr}(\phi^{a}J_{\nu})$$

Abelian Bianchi Identities

Definition

A violation of Abelian Bianchi Identities is by definition a non zero value of the magnetic current $j^a_{\nu} = \partial_{\mu} \tilde{F}^a_{\mu\nu}$

The current j_{ν}^{a} strongly depends on the specific Abelian Projection used, that is on ϕ^{a} , as clearly seen on the lattice.

$\mathsf{NABI} \Leftrightarrow \mathsf{ABI}$ $j^a_ u = \mathsf{Tr}(\phi^a J_ u)$

Proof for general groups in Bonati et al. Phys. Rev. D 81, 085022 (2010)

An explicit example: 't Hooft-Polyakov monopole (1)

$$A_0^a = 0$$
 $A_i^a = \epsilon_{aji} \frac{r_j}{er^2} (1 - K)$

$$\mathcal{K} \equiv \mathcal{K}(evr); v = \text{Higgs v.e.v.}$$
$$\mathcal{K}(x) \stackrel{x \to 0}{\approx} 1 - x^{2}; \mathcal{K}(x) \stackrel{x \to \infty}{\approx} e^{-x}$$
$$\mathcal{V}(\theta, \phi) = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} e^{-i\phi} \\ \sin \frac{\theta}{2} e^{i\phi} & \cos \frac{\theta}{2} \end{pmatrix}$$

The unitary gauge (in polar coord.)

$$\begin{aligned} A_0 &= 0 \quad A_r = 0 \\ A_\theta &= \frac{1}{2er} \begin{pmatrix} 0 & iKe^{-i\phi} \\ -iKe^{i\phi} & 0 \end{pmatrix} \\ A_\phi &= \frac{1}{2er} \begin{pmatrix} \frac{1-\cos\theta}{\sin\theta} & Ke^{-i\phi} \\ Ke^{i\phi} & -\frac{1-\cos\theta}{\sin\theta} \end{pmatrix} \end{aligned}$$

$$A_{\mu}^{ ext{unit}} = V^{\dagger} A_{\mu}^{ ext{hed}} V - rac{i}{e} V^{\dagger} \partial_{\mu} V$$

see e.g. Y. Shnir "Magnetic Monopoles", Springer 2005

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

An explicit example: 't Hooft-Polyakov monopole (2)

When there is a Higgs field the natural AP is $\phi^a = \phi_0^a \equiv \frac{\sigma^3}{2}$ NABI: $J_0 = \vec{D} \cdot \vec{B} = \frac{2\pi}{e} \delta^3(\vec{r}) \sigma^3$ where $B_i \equiv \frac{1}{2} \epsilon_{ijk} G_{jk}$ ABI: $j_0 = \vec{\nabla} \cdot \vec{b} = 4\pi g \delta^3(\vec{r})$ where $b_i \equiv \frac{1}{2} \epsilon_{ijk} F_{jk}$ $\boxed{g = \frac{1}{2e}}$

Pure gauge theory ('t Hooft) $\phi^a(r) = \overline{U(r)\frac{\sigma^3}{2}U(r)^{\dagger}}$

$$J(0) = \exp(i\alpha\sigma^3/2)\exp(i\beta\sigma^2/2)\exp(i\gamma\sigma^3/2)$$
$$g = \frac{1}{2e}\operatorname{Tr}\left(\frac{\sigma^3}{2}\phi^a\right) = \frac{\cos\beta}{2e}$$

Coleman observation

Coleman observation

Theorem

Coleman "The magnetic monopole 50 years later"

Every field configuration such that

- it is time-independent and time reversal invariant
- it is solution of equations of motion
- it behaves asymptotically as $\vec{A} = \frac{\vec{a}(\theta,\phi)}{r} + O\left(\frac{1}{r^2}\right)$

is gauge equivalent to $A_{\phi} = eQ(1 - \cos \theta)$, with Q constant matrix in the algebra. By a global gauge transformation $Q = g\sigma^3$ and Dirac condition becomes $\exp(4\pi i eg\sigma^3) = 1$, $g = \frac{n}{2e}$

Consequence (apparently never really appreciated)

Every monopole field selects its own Abelian Projection.

General consequences for Abelian Projections

How to select the correct Abelian Projections?

General semi-classical method

Let A_M be a general monopole configuration. Then

- let A_M be a configuration within the same homotopy class of A_M satisfying Coleman assumptions
- gauge transform A_M to Coleman form A_M^C
- let A_{tHP} be the 't Hooft-Polyakov solution in the unitary gauge with the appropriate charge, then

$$A_M^C = \underbrace{A_M^C - A_{tHP}}_{A_{Fluct}} + A_{tHP}$$

By construction A_{Fluct} is sub-leading and because of the linearity of 't Hooft tensor it has no magnetic charge.

General consequences for Abelian Projections

The correct Abelian Projections

How to select the unitary gauge in 't Hooft-Polyakov monopole?

It is simple to show that 't Hooft-Polyakov solution in the unitary gauge exactly satisfies the equation

$$\partial_{\mu}A^+_{\mu} + ie[A^3_{\mu}, A^+_{\mu}] = 0$$

It is just the Maximal Abelian Gauge!

The result

To have a magnetic charge obeying Dirac constraint the legitimate Abelian Projections are those which asymptotically coincide with the Maximal Abelian Gauge. General consequences for Abelian Projections

General consequences

- MAG has to be used if the goal is to detect a monopole. If instead one wants to create a monopole on a configuration with no magnetic charge all Abelian Projections are equivalent since there is no previous "preferred projection".
- Monopole condensation is AP independent: if O(x) is a magnetically charged operator in MAG, its magnetic charge will generically be non-vanishing also in other Abelian Projections, although it will be less than the MAG one.
- e.g. for SU(2) we have $Q^{GF} = Q^{MAG} \cos \beta$
 - Landau gauge corresponds to the hedgehog gauge in 't Hooft Polyakov monopole and it has Q^{Landau} = 0 for all configurations.

Non abelian Bianchi identities, monopoles and gauge invariance

General consequences for Abelian Projections

On the lattice

Since $|Q^{GF}| < |Q^{MAG}|$ the monopole density observed in a generic projection has to be less than the MAG one.

Beware of lattice artifacts!

Appendix

NABI \Leftrightarrow ABI: a proof for SU(2)

$$\begin{array}{l} \partial_{\mu} \mathrm{Tr}(\phi^{a}\tilde{G}_{\mu\nu}) = \mathrm{Tr}(\phi^{a}D_{\mu}\tilde{G}_{\mu\nu}) + \mathrm{Tr}(D_{\mu}\phi^{a}\tilde{G}_{\mu\nu}) \equiv \mathrm{Tr}(\phi^{a}J_{\nu}) + \mathrm{Tr}(D_{\mu}\phi^{a}\tilde{G}_{\mu\nu}) \\ \mathrm{By} \mbox{ using } F^{a}_{\mu\nu} = \mathrm{Tr}(\phi^{a}G_{\mu\nu}) - \frac{i}{e}\mathrm{Tr}(\phi^{a}[D_{\mu}\phi^{a}, D_{\nu}\phi^{a}]) \mbox{ we have} \\ \partial_{\mu}\tilde{F}^{a}_{\mu\nu} = \partial_{\mu}\mathrm{Tr}(\phi^{a}\tilde{G}_{\mu\nu}) - \frac{i}{2e}\epsilon_{\mu\nu\rho\sigma}\partial_{\mu}\mathrm{Tr}(\phi^{a}[D_{\rho}\phi^{a}, D_{\sigma}\phi^{a}]) \mbox{ and so} \\ \hline \partial_{\mu}\tilde{F}^{a}_{\mu\nu} = \mathrm{Tr}(\phi^{a}J_{\nu}) + R^{a}_{\nu} \mbox{ where} \\ \hline R^{a}_{\nu} \equiv \mathrm{Tr}(D_{\mu}\phi^{a}\tilde{G}_{\mu\nu}) - \frac{i}{2e}\epsilon_{\mu\nu\rho\sigma}\partial_{\mu}\mathrm{Tr}(\phi^{a}[D_{\rho}\phi^{a}, D_{\sigma}\phi^{a}]) \stackrel{?}{=} 0 \\ \phi^{a} = U(x)\phi^{a}_{0}U^{\dagger}(x) \Rightarrow D_{\mu}\phi^{a} = ie[A_{\mu} + \Omega_{\mu}, \phi^{a}] \Rightarrow \mathrm{Tr}(D_{\mu}\phi^{a}\tilde{G}_{\mu\nu}) = ie\mathrm{Tr}((A_{\mu} + \Omega_{\mu})[\phi^{a}, \tilde{G}_{\mu\nu}]) = \mathrm{Tr}(D_{\mu}\phi^{a}P^{a}\tilde{G}_{\mu\nu}) \mbox{ where } P^{a} = \mathrm{projector} \mbox{ on components} \\ \mathrm{that \ do \ not \ commute \ with \ \phi^{a}. \ For \ SU(2) \ P^{a} = [\phi^{a}, [\phi^{a}, \cdot]] \\ \hline R^{a}_{\nu} = -\frac{i}{2e}\epsilon_{\mu\nu\rho\sigma}\mathrm{Tr}(D_{\mu}\phi^{a}[D_{\rho}\phi^{a}, D_{\sigma}\phi^{a}]) \\ \mathrm{From \ Tr}(\phi^{a}D_{\mu}\phi^{a}) = \frac{1}{2}\partial_{\mu}\mathrm{Tr}((\phi^{a})^{2}) = 0 \ \mathrm{it \ follows \ that, \ in \ the \ unitary \ gauge} \\ \phi^{a} = \phi^{a}_{0} \equiv \frac{1}{2}\sigma^{3}, \ \mathrm{the \ covariant \ derivatives \ are \ linear \ combinations \ of \ \sigma^{+} \ and \ \sigma^{-}. \\ \mathrm{The \ trace \ of \ three \ \sigma^{\pm} \ is \ zero \ and \ therefore \ R^{a}_{\nu} = 0 \\ \hline \end{array}$$

Conclusions

We have shown that

- monopoles are related to NABI violations
- to detect monopoles not all Abelian Projections are equivalent and the Maximal Abelian Gauge is the correct choice

monopole condensation is gauge invariant