Another Mean Field Treatment in the Strong Coupling Limit of Lattice QCD

Akira Ohnishi (YITP, Kyoto Univ.) in collaboration with

K. Miura (Frascati), T.Z.Nakano (YITP & Kyoto U.)

- Introduction --- Homeworks in SCL-LQCD
- Chiral phase diagram in SCL-LQCD (σ as a mean field)
- **Phase transitions with another mean field than** σ
- Conclusion

Related talks: Miura (Tue), Nakano (Tue)

QCD Phase diagram

- **Phase transition at high T** \rightarrow Lattice MC, RHIC, LHC
- High μ transition has rich physics
 → Various phases, CEP, Astrophysical applications, ...

Strong Coupling Lattice QCD

- SC-LQCD is a powerful tool to investigate QCD phase diagram including finite density region !
- Pure Yang-Mills theory

Wilson ('74), Munster ('81),, Langelage, Münster, Philipsen ('08, Finite T), Langelage, Lottini, Philipsen ('10, Finite T, Tue)

Spontaneous breaking of the chiral symmetry & Phase diagram

Kawamoto, Smit ('81), Kluberg-Stern, Morel, Petersson ('83), Damgaard, Kawamoto, Shigemoto('84), Rossi, Wolff ('84), ... Nishida, Fukushima, Hatsuda ('04), Fukushima ('04), Kawamoto, Miura, AO, Ohnuma ('07, SCL, *LAT07*), de Forcrand, Fromm ('10)

Finite coupling & Polyakov loop

Kogut, Snow, Stone ('82), Ilgenfritz, Kripfganz ('85), Gocksch, Ogilvie ('85), Faldt, Petersson ('86), Bilic,Karsch, Redlich('92), Fukkushima('03), Miura,Nakano,AO,Kawamoto('09, NLO, *LAT08*), Nakano,Miura,AO('10, NNLO, *LAT09*; PL, *LAT10*)

SC-LQCD with Polyakov Loop Effects

- Phase diagram with NLO (1/g²) & Polyakov loop effects (PNLO)
 - Phase boundary of chiral & deconfinement Miura (Tue)
- **Phase transition at \mu=0 with NNLO (1/g⁴) & Polyakov loop effects**
 - Non-trivial Polyakov-chiral coupling via U₀ integral Nakano (Tue)

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

SC-LQCD with Polyakov Loop Effects

- Phase diagram with NLO (1/g²) & Polyakov loop effects (PNLO)
 - Phase boundary of chiral & deconfinement Miura (Tue)
- **Phase transition at \mu=0 with NNLO (1/g⁴) & Polyakov loop effects**
 - Non-trivial Polyakov-chiral coupling via U₀ integral Nakano (Tue)

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

SC-LQCD with Polyakov Loop Effects

- Phase diagram with NLO (1/g²) & Polyakov loop effects (PNLO)
 - Phase boundary of chiral & deconfinement *Miura (Tue)*
- **Phase transition at \mu=0 with NNLO (1/g⁴) & Polyakov loop effects**
 - Non-trivial Polyakov-chiral coupling via U₀ integral Nakano (Tue)

With improved PL effective action (*) and higher order terms, it may be possible to understand QCD phase diagram

*Langelage,Lottini, Philipsen(Tue)

Homeworks in SC-LQCD

- Higher orders in 1/g², Roughening transition, Convergence, Fermi sphere of quarks, Fluctuations of aux. fields, ...
- Homeworks in the Strong Coupling Limit
 - Mean field results do not reproduce MC Results (MDP) *de Forcrand, Fromm (PRL, '10)*
 - Zero T (U₀ integral first) & Finite T (U₀ integral later) treatments give different results at low T.

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

7 /24

Homeworks in SC-LQCD

- Higher orders in 1/g², Roughening transition, Convergence, Fermi sphere of quarks, Fluctuations of aux. fields, ...
- Homeworks in the Strong Coupling Limit
 - Mean field results do not reproduce MC Results (MDP) *de Forcrand, Fromm (PRL, '10)*
 - Zero T (U₀ integral first) & Finite T (U₀ integral later) treatments give different results at low T.

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

Strong Coupling Limit of Lattice QCD

Damgaad-Kawamoto-Shigemoto ('84), Fukushima ('04)

Lattice QCD action (unrooted staggered fermion)

Strong Coupling Limit of Lattice QCD

Damgaad-Kawamoto-Shigemoto ('84), Fukushima ('04)

Lattice QCD action (unrooted staggered fermion)

- Strong Coupling Limit (U_j integral + 1/d expansion) $S_{\text{eff}} = \frac{1}{2} \sum_{x} \left[V_x^+ - V_x^- \right] - \frac{1}{4N_x} \sum_{x \neq j} M_x M_{x+j} + m_0 \sum_{x} M_x + O(1/\sqrt{d})$
- **Bosonization+ quark & U_0 integral** \rightarrow Effective Potential

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

10 /24

Phase diagram in SCL-LQCD

- **Bilic, Karsch, Redlich ('92):** $M \rightarrow \sigma$
 - Shape looks good. 2nd \rightarrow 1st @ $\beta \sim 1$, but $\beta \sim 4$ in MC (de Forcrand)
- Fukushima ('04), Nishida ('04): Bosonization (Weiss MF app.)
 - $T_c = 5/3 > 1.4$ (MDP), Region with $d\mu_c/dT > 0$ (Lattice artefact)
- Kawamoto, Miura, AO, Ohnuma ('07): Bosonization+Baryon
 - Better shape but bosonization breaks chiral sym.

Phase diagram in Monomer-Dimer-Polymer simulation

MDP simulation

Karsch, Mutter ('89), Rossi, Wolff ('84, U(3))

- Integrate out link variables first in the strong coupling limit (Zero T treatment)
- Integral over quarks are replaced with loop config. sum → Sign problem is weakened
- Phase diagram on anisotropic lattice

de Forcrand, Fromm ('10)

Critical Point at a lower μ than SCL-LQCD

What's wrong ? Polyakov loop effects in SCL ?

SC-LQCD with Polyakov loop effects *Miura (Tue), Nakano(Tue)*

$$Z^{(F)} \simeq \prod_{\mathbf{x}} \int d\mathcal{U}(x) e^{N_c E_q / T + 2\beta_p \bar{\ell} \ell} \det_c \left[(1 + \mathcal{U}e^{-(E_q - \tilde{\mu})/T}) (1 + \mathcal{U}^{\dagger} e^{-(E_q + \tilde{\mu})/T}) \right]$$
$$\left[d\mathcal{U} = d\ell d\bar{\ell} H(\ell, \bar{\ell}), \ H = 1 - 6\ell \bar{\ell} + 4(\ell^3 + \bar{\ell}^3) - 3(\ell \bar{\ell})^3, \ \det_c(...) = D(E_q, \tilde{\mu}, \ell, \bar{\ell}) \right]$$
$$= \prod_{\mathbf{x}} \int d\ell d\bar{\ell} \exp\left[-\frac{1}{T} \left(N_c E_q - 2T \beta_p \bar{\ell} \ell - T \log D - T \log H \right) \right]$$

What's wrong ? Polyakov loop effects in SCL ?

SC-LQCD with Polyakov loop effects *Miura (Tue), Nakano(Tue)*

$$Z^{(F)} \simeq \prod_{\mathbf{x}} \int d\mathcal{U}(x) e^{N_c E_q / T + 2\beta_p \bar{\ell} \ell} \det_c \left[(1 + \mathcal{U}e^{-(E_q - \tilde{\mu})/T}) (1 + \mathcal{U}^{\dagger} e^{-(E_q + \tilde{\mu})/T}) \right]$$
$$\left[d\mathcal{U} = d\ell d\bar{\ell} H(\ell, \bar{\ell}), \ H = 1 - 6\ell \bar{\ell} + 4(\ell^3 + \bar{\ell}^3) - 3(\ell \bar{\ell})^3, \ \det_c(...) = D(E_q, \tilde{\mu}, \ell, \bar{\ell}) \right]$$
$$= \prod_{\mathbf{x}} \int d\ell d\bar{\ell} \exp \left[-\frac{1}{T} \left[N_c E_q - 2T \beta_p \bar{\ell} \ell - T \log D - T \log H \right] \right]^{-1} \mathbf{F}_{eff}^{(q)}$$

- In the Haar Measure method, Polyakov loop affect F_{eff} even in SCL, and reduces T_c.
- Phase diagram shape is not improved in SCL.
- No effects on T_c if we integrate out U₀.
 (Danzer(Thu), PL dist. is spread.)

What's wrong ? Zero T treatment in SCL-LQCD ?

Diff. in Finite T (U_0 int. later) & Zero T (U_0 int. first) treatments \rightarrow No. Naïve Zero T treatment leads to divergent potential(-log σ)

$$S_{\rm eff} = -\frac{1}{4N_c} \sum_{v,x} M_x M_{x+\hat{v}} + m_0 \sum_x M_x + O(1/\sqrt{d+1}) \simeq \frac{b'_{\sigma}}{2} \sum_x \sigma^2 + \sum_x m_q M_x$$

$$\to F_{\rm eff} = \frac{b'_{\sigma}}{2} \sigma^2 - N_c \log(m_q) \qquad [b'_{\sigma} = (d+1)/2N_c, m_q = b'_{\sigma} \sigma + m_0]$$

Higher order in 1/d expansion helps ?

 → No, in the previously works.
 NLO in 1/d (baryonic term) gives rise to σ⁶ potential, and no effects on 2nd ord. p.t.

 Damgaard, Hochberg, Kawamoto ('85)

Finite T $2 \\ -1 \\ -2 \\ 0 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 2.5 \\ 3 \\ \sigma$

What's wrong ? Zero T treatment in SCL-LQCD ?

Diff. in Finite T (U_0 int. later) & Zero T (U_0 int. first) treatments \rightarrow No. Naïve Zero T treatment leads to divergent potential(-log σ)

$$S_{\text{eff}} = -\frac{1}{4N_c} \sum_{v,x} M_x M_{x+\hat{v}} + m_0 \sum_x M_x + O(1/\sqrt{d+1}) \simeq \frac{b'_\sigma}{2} \sum_x \sigma^2 + \sum_x m_q M_x$$
$$\rightarrow F_{\text{eff}} = \frac{b'_\sigma}{2} \sigma^2 - N_c \log(m_q) \qquad [b'_\sigma = (d+1)/2N_c, m_q = b'_\sigma \sigma + m_0]$$

Higher order in 1/d expansion helps ?

 → No, in the previously works.
 NLO in 1/d (baryonic term) gives rise to σ⁶ potential, and no effects
 on 2nd ord. p.t.

 Damgaard, Hochberg, Kawamoto ('85)

These problems come from "diagonal" mean field. → *What happens if we introduce "temporally non-local" MF ?*

Another treatment of baryonic composites

bosonize V³ into V and introduce mean field for V

$$\exp(\mp \alpha V^{3}) \simeq \exp[-\alpha (\bar{\psi}^{(1)} \psi^{(1)} - V^{2} \psi^{(1)} \pm \bar{\psi}^{(1)} V)] \\ \exp(\alpha \psi^{(1)} V^{2}) \simeq \exp[-\alpha (\bar{\psi}^{(2)} \psi^{(2)} - V \psi^{(2)} - \bar{\psi}^{(2)} V \psi^{(1)})]$$

via Extended HS transf. *Miura, Nakano, AO('09)*

Another treatment of baryonic composites

bosonize V³ into V and introduce mean field for V

$$\exp(\mp \alpha V^{3}) \simeq \exp[-\alpha (\bar{\psi}^{(1)} \psi^{(1)} - V^{2} \psi^{(1)} \pm \bar{\psi}^{(1)} V)] \\ \exp(\alpha \psi^{(1)} V^{2}) \simeq \exp[-\alpha (\bar{\psi}^{(2)} \psi^{(2)} - V \psi^{(2)} - \bar{\psi}^{(2)} V \psi^{(1)})]$$

via Extended HS transf. *Miura, Nakano, AO('09)*

■ Effective action for Quarks → quarks on different sites are connected via $V_{+\mu,x} = \eta_{\nu,x} \overline{X}_x^a X_x^a$

$$S_{\rm eff} = N_{\tau} L^{d} F_{\rm eff}^{(X)} \Big(\sigma, \psi_{\pm\nu}^{(k)}, \psi_{\pm\nu}^{(k)} \Big) + \frac{1}{2} \sum_{\nu, x} \Big[Z_{+\nu} V_{+\nu, x} - Z_{-\nu} V_{-\nu, x} \Big] + m_{q} \sum_{x} M_{x} \\ Z_{+\nu} = 2 \alpha \Big(\psi_{+\nu}^{(1)} - \psi_{+\nu}^{(2)} - \psi_{+\nu}^{(2)} \psi_{+\nu}^{(1)} \Big), \quad Z_{-\nu} = 2 \alpha \Big(\psi_{+\nu}^{(1)} + \psi_{+\nu}^{(2)} + \psi_{+\nu}^{(2)} \psi_{+\nu}^{(1)} \Big)$$

- Assuming constant aux. fields (ψ and σ)
 → Free quarks couples with aux. fields through Constituent quark mass (m_q)
 - and W.F. Renormalization Factors $(Z_{\pm v})$

Effective potential

■ Fourier transf.+Anti-periodic temporal B.C.+ Matsubara product → Effective potential

$$S_{F,\text{eff}} = \frac{1}{2} \sum_{v,x} \left[Z_{+v} V_{+v,x} - Z_{-v} V_{-v,x} \right] + m_q \sum_x M_x$$

$$F_{\text{eff}} = \frac{b_\sigma}{2} \sigma^2 + 2\alpha (\varphi_+^3 + \varphi_-^3) + 4\alpha d \varphi_s^3 + V_q$$

$$V_q = -N_c T \frac{1}{L^d} \sum_k \left[\frac{E_k}{T} + \log(1 + e^{-(E_k - \tilde{\mu})/T}) + \log(1 + e^{-(E_k + \tilde{\mu})/T}) \right] - N_c \log Z_x$$

 $Z_{\pm} = 6\alpha \varphi_{\pm}^2, \quad Z_{\chi} = \sqrt{Z_{+}Z_{-}}, \quad \tilde{\mu} = \mu + \log(Z_{+}/Z_{-}), \quad Z_{s} = 6\alpha \varphi_{s}^2, \quad E_{k} = \operatorname{arcsinh}(\varepsilon_{k}/Z_{\chi}), \quad \varepsilon_{k} = \sqrt{m_{q}^2 + Z_{s}^2 \sin^2 k}$

Effective potential

■ Fourier transf.+Anti-periodic temporal B.C.+ Matsubara product → Effective potential

$$S_{F, eff} = \frac{1}{2} \sum_{v, x} \left[Z_{+v} V_{+v, x} - Z_{-v} V_{-v, x} \right] + m_q \sum_x M_x$$

$$F_{eff} = \frac{b_\sigma}{2} \sigma^2 + 2\alpha (\varphi_+^3 + \varphi_-^3) + 4\alpha d \varphi_s^3 + V_q$$

$$V_q = -N_c T \frac{1}{L^d} \sum_k \left[\frac{E_k}{T} + \log(1 + e^{-(E_k - \tilde{\mu})/T}) + \log(1 + e^{-(E_k + \tilde{\mu})/T}) \right] - N_c \log Z_x$$

$$Z_{\pm} = 6 \alpha \varphi_{\pm}^{2}, \quad Z_{\chi} = \sqrt{Z_{+}Z_{-}}, \quad \tilde{\mu} = \mu + \log(Z_{+}/Z_{-}), \quad Z_{s} = 6 \alpha \varphi_{s}^{2}, \quad E_{k} = \operatorname{arcsinh}(\varepsilon_{k}/Z_{\chi}), \quad \varepsilon_{k} = \sqrt{m_{q}^{2} + Z_{s}^{2} \sin^{2} k}$$
(T, \mu)=(0,0)

- **This** F_{eff} has interesting featues as,
 - NJL type eff. pot. with variable wave func. renormalization factor.
 - Momentum integral with k → sin k
 (k integral is omitted later.)

Potential Surface at $\mu=0$

- Another mean field φ connects two types of potential !
 - $\phi = 0 \rightarrow Zero T$ treatment (log σ) type
 - $\phi \neq 0 \rightarrow$ Finite T treatment (arcsinh σ) type
- Smooth change from Low T to High $T \rightarrow 2nd$ order

Potential Surface at finite μ (T=0)

- Two types of potentials are separated by a ridge at finite μ
 → first order transition
- High μ transition takes place as (φ, σ)=(0, finite) → (finite, 0)

Phase diagram

- Comparison of the phase diagrams MDP simulation SCL-LQCD Present treatment
 Comparison of the phase diagrams *de Forcrand, Fromm ('10) Fukushima('04), Nishida ('04)*
- **T**_c: 1.4 (MDP), 1.67 (SCL-LQCD), 0.92 (= $(8/9)^{2/3}$)(Present)
- μ_c: 0.59 (MDP), 0.55 (SCL-LQCD), 1.08 (Present)
 - \rightarrow Desired direction, but too much. Shape is improved.

Summary

- Strong coupling lattice QCD is a promising tool to understand QCD phase diagram, qualitatively and quantitatively.
- We have investigated the origin of the discrepancies between Mean field treatments
 - and Monomer-Dimer-Polymer (MDP) simulation
 - in the strong coupling limit of lattice QCD.
 - Within the Zero T & mean field treatment, mean field connecting different temporal sites would be necessary.
 - We have examined the consequences of a new type of mean field $\phi_{\pm} \sim \langle \eta \chi_x^{bar} \chi_{x\pm 0} \rangle$ is introduced in the Zero T treatment. Phase diagram shape is improved, but the effects are too much.
- We should examine the effects of Polyakov loop, quark momentum integral, and fluctuation of aux. Fields.
 - \rightarrow to be continued...

Backup

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

SC-LQCD with $1/g^2$ corrections (1)

Effective Action with finite coupling corrections Integral of $exp(-S_G)$ over spatial links with $exp(-S_F)$ weight $\rightarrow S_{eff}$

$$S_{\text{eff}} = S_{\text{SCL}} - \log \langle \exp(-S_G) \rangle = S_{\text{SCL}} - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \langle S_G^n \rangle_c$$

 $<S_{G}^{n}>_{c}=$ Cumulant (connected diagram contr.) *c.f. R.Kubo('62)*

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} (V_{x}^{+} - V_{x}^{-}) - \frac{b_{\sigma}}{2d} \sum_{x,j>0} [MM]_{j,x} \qquad SCL \ (Kawamoto-Smit, \ '81)$$

$$+ \frac{1}{2} \frac{\beta_{\tau}}{2d} \sum_{x,j>0} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} - \frac{1}{2} \frac{\beta_{s}}{d(d-1)} \sum_{x,j>0,k>0,k\neq j} [MMMM]_{jk,x} \qquad NLO \ (Faldt-Petersson, \ '86)$$

$$- \frac{\beta_{\tau\tau}}{2d} \sum_{x,j>0} [W^{+}W^{-} + W^{-}W^{+}]_{j,x} - \frac{\beta_{ss}}{4d(d-1)(d-2)} \sum_{\substack{x,j>0,|k|>0,|l|>0\\|k|\neq j,|l|\neq |k|}} [MMMM]_{jk,x} [MM]_{j,x+\hat{l}}$$

$$+ \frac{\beta_{\tau s}}{8d(d-1)} \sum_{x,j>0,|k|\neq j} [V^{+}V^{-} + V^{-}V^{+}]_{j,x} \left([MM]_{j,x+\hat{k}} + [MM]_{j,x+\hat{k}+\hat{0}} \right) \qquad NNLO \ (Nakano, Miura, AO, \ '09)$$

SC-LQCD with $1/g^2$ corrections (2)

• Extended Hubbard-Stratonovich transformation $\exp(\alpha A B) = \int d\varphi d\varphi \exp[-\alpha(\varphi^2 - (A + B)\varphi + \varphi^2 - i(A - B)\varphi)]$ $\approx \exp[-\alpha(\bar{\psi}\psi - A\psi - \bar{\psi}B)]_{\text{stationary}}$

Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09) **4, 8, 12 Fermion int. term** \rightarrow **bi-linear form of quarks.** Ex.: $V^+V^- \rightarrow \varphi_{\tau}^2 - \omega_{\tau}^2 + \varphi_{\tau}(V^+ - V^-) - \omega_{\tau}(V^+ + V^-)$

Effective Action after bosonization (and in gluonic dressed fermion) $S_{eff} = S_{eff}^{(F)} + S_{eff}^{(X)}$ $V^+V^ V^+(\varphi_{\tau}-\omega_{\tau})-V^-(\varphi_{\tau}+\omega_{\tau})$ $S_{eff}^{(F)} = \frac{1}{2} \sum \left[Z_{-} V_{x}^{+}(\mu) - Z_{+} V_{x}^{-}(\mu) \right] + m_{q} \sum M_{x}$ $= Z_{\chi} \left\{ \frac{1}{2} \sum_{x} \left[e^{-\delta \mu} V_{x}^{+}(\mu) - e^{+\delta \mu} V_{x}^{-}(\mu) \right] + \tilde{m}_{q} \sum_{x} M_{x} \right\} = Z_{\chi} \sum \bar{\chi} G^{-1} \chi$ \rightarrow w.f. renorm. factor (Z₂), quark mass (m_a), chem. pot. shift ($\delta\mu$) 28 /24 Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

Phase Diagram Evolution

Shape of the phase diagram is compressed in T direction with β

 \rightarrow *Improvements in R*= μ_c/T_c !

- MC (R > 1) → SCL (R = (0.3-0.45))
 → NLO/NNLO (R ~ 1)
 → Real World (R~(2-4))
- Critical Point
 - NLO: μ(CP) ~ Const.
 - NNLO: $\mu(CP)$ decreases with β 1 \rightarrow *Improvements* ! (N_f=4 \rightarrow 1st order)

Kronfeld ('07), Pisarski, Wilczek ('84)

• $\mu(CP)/T(CP) \sim 1 \leftrightarrow MC (\mu/T > 1)$ *Ejiri, ('08), Aoki et al.(WHOT,'08), Allton et al., ('03,'05)*

Miura, Nakano, AO, Kawamoto ('09) Nakano, Miura, AO ('09)

Zero T treatment in SCL-LQCD

■ Link integral in the Strong Coupling Limit (no plaquette)
 → Effective action of quarks (exact)

$$S_{\text{eff}} = \sum_{x,\nu} S_{\nu,x} + m_0 \sum_x M_x$$

$$S_{\nu,x} = -\frac{1}{4N_c} [MM]_{+\nu,x} + \frac{1}{2^{N_c}} \left(\eta_{\nu,x} [\bar{B}B]_{+\nu,x} - \eta_{\nu,x}^{-1} [\bar{B}B]_{-\nu,x} \right)$$

$$-\frac{1}{576} [MM]_{+\nu,x}^2 - \frac{5}{576} [\bar{B}B]_{+\nu,x} [\bar{B}B]_{-\nu,x}$$

- Approximations in SCL-LQCD
 - LO in 1/d expansion = min. quark number config.
 → Baryonic action (6q), M⁴ (8q) term, M⁶ term (12q) are ignored. (d=3=spatial dim.)
 - Mean field approximation
 - \rightarrow fluctuations in aux. fields are ignored.

Monomer-Dimer-Polymer simulation

Monomer-Dimer-Polymer simulation (MDP)

Karsch, Mutter ('89), Rossi, Wolff ('84, U(3))

- \rightarrow Integrate out link variables first in the strong coupling limit
 - Sign problem is weakened → Phase diagram in SCL de Forcrand, Fromm ('10)
 - T_c(μ=0) and μ_c(T=0) qualitatively agree with SCL-LQCD (MF) results.

 $aT_c = 5/3$ (MF), 1.41(3) (MDP) $a\mu_c = 0.549$ (MF), 0.593(MDP) $(aT_{TCP}, a\mu_{TCP})$ =(0.867, 0.578)(MF), (0.86(2), 0.355(5))(MDP)

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

Strong Coupling Limit of Lattice QCD: Zero T (Std.)

Kawamoto-Smit('81), Damgaad-Kawamoto-Shigemoto ('84) Zero T treatment (U integral + 1/d expansion) $S_{\text{eff}} = \frac{1}{4N_c} \sum_{x} \sum_{i=0}^{n} M_x M_{x+\hat{j}} + m_0 \sum_{x} M_x + O(1/\sqrt{d})$ $\simeq N_{\tau}L^{3} \times \frac{1}{2}b_{\sigma}\sigma^{2} + \sum_{\alpha}(b_{\sigma}\sigma + m_{0})M_{x}$ $F_{\rm eff} = \frac{1}{2} b_{\sigma} \sigma^2 - N_c \log(b_{\sigma} \sigma + m_0)$ $\begin{array}{c} \chi \\ U \\ \overline{\chi} \\ \overline{\chi} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \overline{\chi} \\ \overline{\chi} \\ \overline{\chi} \\ \end{array} \\ \begin{array}{c} \overline{\chi} \\ \overline{\chi} \\ \overline{\chi} \\ \overline{\chi} \\ \end{array} \\ \begin{array}{c} \overline{\chi} \\ \overline{\chi} \\ \overline{\chi} \\ \overline{\chi} \\ \end{array} \\ \begin{array}{c} \overline{\chi} \\ \overline{\chi$ Quark-Gluon Dynamics \rightarrow Hadronic Composites(+ U) 32 /24 Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

Critical Temperature and Chemical Potential

- **a** Critical Temperature ($\mu = 0$) \rightarrow rapid decrease with $\beta = 2N_c/g^2$
 - W.F. Renom. factor $Z_{\gamma} \rightarrow$ suppression of mass
 - T_c is still larger than MC results de Forcrand ('06), Gottlieb et al. ('87), Gavai et al. ('90), de Forcrand, Fromm ('09)
- **Critical Chem. Pot. (T=0)** \rightarrow weak deps. on β
 - Suppression of mass ~ Suppression of $\widetilde{\mu}$

Polyakov Loop Effects

- $T_{c}(NLO) \sim T_{c}(NNLO) > T_{c}(MC)$
 - → Slow convergence ? Deconfinement ?
 - \rightarrow Resummation is necessary !
- NNLO SC-LQCD with Polyakov loop effects

Nakano, Miura, AO, in prep. c.f. PNJL (Fukushima /

Ratti-Weise et al. / Kyushu group)

Pros

Chiral & Deconf. transition Large effects on T_c

Cons

Expansion is not systematic in 1/g² Does not improve at SCL

Boyd, Karsch et al. / de Forcrand & Fromm ('09)

Cold Nuclear Matter in Lattice QCD

Baryon mass puzzle in SCL-LQCD: $N_c \mu_c < M_B$

→ QCD phase transition takes place before baryons appear. *Kluberg-Stern, Morel, Petersson ('83), Damgaard, Hochberg,Kawamoto ('85), Karsch, Mutter ('89), Barbour et al.('97), Bringoltz('07), Miura, Kawamoto, AO ('07)*

Possible Solutions

• Regard the matter at $\mu > \mu_c$ as nuclear matter *de Forcrand, Fromm ('09)*

Finite coupling effects: Decrease of quark mass

Constituent Quark Mass in NNLO SC-LQCD

- Mechanism of "stable" μ_c(T=0) in NLO/NNLO SC-LQCD
 - = Effects of quark mass reduction & repulsive vector pot. cancel

Transition Condition at $T = 0: E_q(\tilde{m}_q) = \tilde{\mu} \simeq \mu - \beta'_\tau \omega_\tau$ $\rightarrow \mu \simeq E_q(\tilde{m}_q) + \beta'_\tau \omega_\tau$

Pocket formula $\mu_{c,T=0} \simeq \frac{1}{2} \left[E_q(\sigma = \sigma_{\text{vac}}, \omega_{\tau} = 0) + \delta \mu(\sigma = 0, \omega = N_c) \right]$

Quark mass ($\approx E_q$) is smaller than μ_c for $\beta > 5.5$. \rightarrow "Baryon mass puzzle" may be solved !

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

Nuclear Matter on the Lattice at Strong Coupling

- Do we observe finite density matter before 1st order phase transition ? → Yes !
 - $E_q(\mu=0, T=0, \beta=6)=0.61$ $\mu_c^{(1st)}(T=0, \beta=6)=0.65$ \rightarrow "Nuclear matter" in 0.61< μ <0.65
- EOS of "Nuclear matter"
 - $a^{-1} = 500 \text{ MeV}$ Bilic, Demeterfi, Petersson ('92) \rightarrow Density in the order of ρ_0
 - No saturation
 - 1st order transition at $\rho_B = 0.4$ fm⁻¹.

Nuclear matter on the lattice. Can we attack it soon ?

Possibilities ?

■ SC-LQCD action can be improved by the plaquette contribution → Effective action of fermions and Polyakov loop with coef. evaluated in MC

$$S_{\text{eff}} = S_{\text{SCL}} + \Delta S_{\text{NLO}} + \Delta S_{\text{NNLO}} + O(1/g^{6})$$

$$= S_{\text{YM}} + \frac{1}{2} \sum_{x} (V^{+} - V^{-})$$

$$+ a_{0s}(N_{\tau}, \beta) \sum M_{x} M_{x+\hat{j}}$$

$$+ a_{1t}(N_{\tau}, \beta) \sum V_{x}^{+} V_{x+\hat{j}}^{-}$$

$$+ a_{1s}(N_{\tau}, \beta) \sum MMMM$$

$$+ \cdots$$

Fermionic
Strong
Coupling
Expansion

E.g. $a_{1s} = \langle \text{Plaq.} \rangle$

ject ! Gluonic SCE

Evolution of Phase Diagram

Phase Diagram "Shape" becomes closer to that of Real World,

 $R=\mu_{c}/T_{c} \sim (2-4)$

- $1985 \rightarrow R=0.26$ (Zero T / Finite T)
- 1992 \rightarrow R=0.28 (Finite T & μ)

• 2004 \rightarrow R= 0.33 (Finite T& μ)

T Damgaad, Kawamoto, Finite T
Shigemoto, 1984
$$T_c=1.1$$
 GeV
Conjecture !
Damgaad, Hochberg,
Kawamoto, 1985
 μ_q Finite μ
1985 $\mu_c=290$ MeV

Strong Coupling Lattice QCD

- **Large bare coupling** $\rightarrow 1/g^2$ expansion
- Success in pure YM → Lattice MC & 1/g² Expansion

Wilson, '74; Creutz '80; Munster '81

- → Scaling region would be accessible in SC-LQCD !
- Chiral transition at finite T and μ in Strong Coupl. Limit (SCL) & Next-to-leading order (NLO) Kawamoto-Smit '81, Damgaard-Kawamoto-Shigemoto, '84(U(3)), Faldt-Petersson'86 (SU(3)), Fukushima'04(SU(3)), Nishida '04 (SU(3)), Bilic-Karsch-Petersson, '92(NLO), Kawamoto-Miura-AO-Ohnuma '07 (Baryons)

Munster, '81

Ohnishi @ Lat10, June 14-19, 2010, Villasimius, Italy

40 /24

QCD Phase diagram

- Phase transition at high T
 - Lattice MC & RHIC
- High μ transition has rich physics
 - Various phases, CEP, Astrophysical applications, ...
 - Models & Approximations are necessary !
 - Lattice MC works only for small μ (Tayler, AC, DOS, Canonical, ...) or in the Strong Coupling Limit(SCL) (MDP) Karsch, Mutter ('89), de Forcrand, Fromm ('09)
 - Eff. Models: NJL, PNJL, PLSM,
 - Approximations: Large Nc, Strong Coupling, ...

NNLO Phase diagram

- With increasing β, phase diagram is compressed in T direction.
- For finite β, 1st order boundary has a negative slope, dT_c/dμ<0. *c.f. Bilic, Demeterfi, Petersson ('92)*
- Existence of the partially chiral restored phase in the higher μ direction of the hadron phase.

