First Applications of the Stochastic LapH method in Lattice QCD Spectroscopy

Speaker: Chik Him Wong*

Authors:

Colin Morningstar^{*}, Chik Him Wong^{*}, Justin Foley^{*}, John Bulava⁺, David Lenkner^{*}, Mike Peardon⁻, Keisuke Juge[§]

(Hadron Spectrum Collaboration) *Carnegie Mellon University, ⁺Deutsches Elektronen Synchrotron, ⁻Trinity College, ^{\$}University of the Pacific

Lattice 2010

Objectives

Reviews

- Stochastic LapH Method
- Simulation Details
- First Applications
 - Applications on Connected -pt Correlators
 - Nucleon
 - Pion
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar 1
 - Isoscalar Scalar o
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

Objectives

Reviews

- Stochastic LapH Method
- Simulation Details
- First Applications
 - Applications on Connected -pt Correlators
 - Nucleon
 - Pion
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar
 - Isoscalar Scalar o
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon
 - Pion
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar 1
 - Isoscalar Scalar or
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon
 - Pion
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar 1
 - Isoscalar Scalar o
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon /
 - Pion /
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar r
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion *π*
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar r
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion 7
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar r
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar r
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $\rho \rightarrow \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $ho o \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $ho o \pi\pi$ Decay
- Current Work & Future Plans

- Objectives
- Reviews
 - Stochastic LapH Method
 - Simulation Details
- First Applications
 - Applications on Connected 2-pt Correlators
 - Nucleon N
 - Pion π
 - Applications on Disconnected Diagrams in Isoscalars
 - Isoscalar Psuedoscalar η
 - Isoscalar Scalar σ
 - Application on Multihadron Diagrams
 - $\pi\pi \to \pi\pi$ Correlator
 - $ho o \pi\pi$ Decay
- Current Work & Future Plans

- Main Goal: Compute the Hadron Spectrum that includes Isoscalar and Multihadron states
- Via Applications of the Stochastic Laplacian Heaviside(LapH) method on a variety of Diagrams, we can:
 - Verify the feasibility & capability of the innovative method
 - Determine the dilution schemes to be used in current & future runs
 - Study the improvement in efficiency compared with ordinary LapH method

- Main Goal: Compute the Hadron Spectrum that includes Isoscalar and Multihadron states
- Via Applications of the Stochastic Laplacian Heaviside(LapH) method on a variety of Diagrams, we can:
 - Verify the feasibility & capability of the innovative method
 - Determine the dilution schemes to be used in current & future runs
 - Study the improvement in efficiency compared with ordinary LapH method

- Main Goal: Compute the Hadron Spectrum that includes Isoscalar and Multihadron states
- Via Applications of the Stochastic Laplacian Heaviside(LapH) method on a variety of Diagrams, we can:
 - Verify the feasibility & capability of the innovative method
 - Determine the dilution schemes to be used in current & future runs
 - Study the improvement in efficiency compared with ordinary LapH method

- Main Goal: Compute the Hadron Spectrum that includes Isoscalar and Multihadron states
- Via Applications of the Stochastic Laplacian Heaviside(LapH) method on a variety of Diagrams, we can:
 - Verify the feasibility & capability of the innovative method
 - Determine the dilution schemes to be used in current & future runs
 - Study the improvement in efficiency compared with ordinary LapH method

- Main Goal: Compute the Hadron Spectrum that includes Isoscalar and Multihadron states
- Via Applications of the Stochastic Laplacian Heaviside(LapH) method on a variety of Diagrams, we can:
 - Verify the feasibility & capability of the innovative method
 - Determine the dilution schemes to be used in current & future runs
 - Study the improvement in efficiency compared with ordinary LapH method

• Stochastic estimation of "Distillation" perambulator M^{-1} by introducing $Z_N = e^{i2\pi n/N}$ noises ρ in Time× Spin× LapH Subspace improved with "Dilution" technique: $M\varphi_D = P^{[D]}\rho, \sum_D E(P^{[D]}\rho(P^{[D]}\rho)^*) = 1 \rightarrow M^{-1} = \sum_D E(\varphi_D(P^{[D]}\rho)^*)$

- Expected Advantages:
 - Suppressed High-lying mode contamination due to the LapH projection
 - Number of Inversions stays almost constant for any lattice size V for a given maximum cutoff eigenvalue due to Dilution technique
 - Factorization into Single Hadron Operators provides a convenient way of constructing different diagrams without storage of huge perambulators:

• Stochastic estimation of "Distillation" perambulator M^{-1} by introducing $Z_N = e^{i2\pi n/N}$ noises ρ in Time× Spin× LapH Subspace improved with "Dilution" technique: $M\varphi_D = P^{[D]}\rho, \sum E(P^{[D]}\rho(P^{[D]}\rho)^*) = 1 \rightarrow M^{-1} = \sum E(\varphi_D(P^{[D]}\rho)^*)$

• Expected Advantages:

- Suppressed High-lying mode contamination due to the LapH projection
- Number of Inversions stays almost constant for any lattice size *V* for a given maximum cutoff eigenvalue due to Dilution technique
- Factorization into Single Hadron Operators provides a convenient way of constructing different diagrams without storage of huge perambulators:

• Stochastic estimation of "Distillation" perambulator M^{-1} by introducing $Z_N = e^{i2\pi n/N}$ noises ρ in Time× Spin× LapH Subspace improved with "Dilution" technique: $M \sigma_P = P^{[D]} \sigma \sum F(P^{[D]} \sigma (P^{[D]} \sigma)^*) = 1 \rightarrow M^{-1} = \sum F(\sigma_P(P^{[D]} \sigma)^*)$

$$M\varphi_D = P^{[D]}\rho, \sum_D E(P^{[D]}\rho(P^{[D]}\rho)^*) = 1 \to M^{-1} = \sum_D E(\varphi_D(P^{[D]}\rho)^*)$$

Expected Advantages:

- Suppressed High-lying mode contamination due to the LapH projection
- Number of Inversions stays almost constant for any lattice size *V* for a given maximum cutoff eigenvalue due to Dilution technique
- Factorization into Single Hadron Operators provides a convenient way of constructing different diagrams without storage of huge perambulators:

- Stochastic estimation of "Distillation" perambulator M^{-1} by introducing $Z_N = e^{i2\pi n/N}$ noises ρ in Time× Spin× LapH Subspace improved with "Dilution" technique: $M\varphi_D = P^{[D]}\rho, \sum E(P^{[D]}\rho(P^{[D]}\rho)^*) = 1 \rightarrow M^{-1} = \sum E(\varphi_D(P^{[D]}\rho)^*)$
- Expected Advantages:
 - Suppressed High-lying mode contamination due to the LapH projection
 - Number of Inversions stays almost constant for any lattice size *V* for a given maximum cutoff eigenvalue due to Dilution technique
 - Factorization into Single Hadron Operators provides a convenient way of constructing different diagrams without storage of huge perambulators:

- Stochastic estimation of "Distillation" perambulator M^{-1} by introducing $Z_N = e^{i2\pi n/N}$ noises ρ in Time× Spin× LapH Subspace improved with "Dilution" technique: $M\varphi_D = P^{[D]}\rho, \sum_{D} E(P^{[D]}\rho(P^{[D]}\rho)^*) = 1 \rightarrow M^{-1} = \sum_{D} E(\varphi_D(P^{[D]}\rho)^*)$
- Expected Advantages:
 - Suppressed High-lying mode contamination due to the LapH projection
 - Number of Inversions stays almost constant for any lattice size *V* for a given maximum cutoff eigenvalue due to Dilution technique
 - Factorization into Single Hadron Operators provides a convenient way of constructing different diagrams without storage of huge perambulators:

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$		Lattice Size($N_x^3 \times N_t$)		
	-0.0840		2 + 1	First Application
				Current Work
				Current Work
				Current Work

	Dilution Subspace	t ₀ -t Propagator	<i>t</i> - <i>t</i> Propagator		
	Time	Full	Interlace 16		
	Spin	Full	Full		
	LapH	Interlace 8	Interlace 8		
				▲□→ ▲ □→ ▲ □→	590

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	Lattice Size($N_x^3 \times N_t$)		
		2 + 1	First Application
			Current Work
			Current Work
			Current Work

Dilution Subspace	t ₀ -t Propagator	<i>t-t</i> Propagator		
Time	Full	Interlace 16		
Spin	Full	Full		
LapH	Interlace 8	Interlace 8		

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12 \text{ fm}$
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$		Lattice Size($N_x^3 \times N_t$)		
	-0.0840		2 + 1	First Application
				Current Work
				Current Work
				Current Work

Dilution Subspace	t ₀ -t Propagator	<i>t</i> - <i>t</i> Propagator		
Time	Full	Interlace 16		
Spin	Full	Full		
LapH	Interlace 8	Interlace 8		

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	Lattice Size($N_x^3 \times N_t$)		
		2 + 1	First Application
			Current Work
			Current Work
			Current Work

Dilution Subspace	t ₀ -t Propagator	<i>t-t</i> Propagator		
Time	Full	Interlace 16		
Spin	Full	Full		
LapH	Interlace 8	Interlace 8		

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f	
380	-0.0840	$16^3 \times 128$	2 + 1	First Application
360	-0.0840	$24^3 \times 128$	2 + 1	Current Work
220	-0.0860	$24^{3} \times 128$	2 + 1	Current Work
220	-0.0860	$32^3 \times 128$	2 + 1	Current Work

Dilution Subspace	t ₀ -t Propagator	<i>t</i> - <i>t</i> Propagator		
Time	Full	Interlace 16		
Spin	Full	Full		
LapH	Interlace 8	Interlace 8		

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f	
380	-0.0840	$16^3 \times 128$	2 + 1	First Application
360	-0.0840	$24^3 \times 128$	2 + 1	Current Work
220	-0.0860	$24^3 \times 128$	2 + 1	Current Work
220	-0.0860	$32^3 \times 128$	2 + 1	Current Work

	Z ₄ Noise				
	Dilution Subspace	t ₀ -t Propagator	<i>t-t</i> Propagator		
	Time	Full	Interlace 16		
	Spin	Full	Full		
	LapH	Interlace 8	Interlace 8		

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f	
380	-0.0840	$16^3 \times 128$	2 + 1	First Application
360	-0.0840	$24^3 \times 128$	2 + 1	Current Work
220	-0.0860	$24^{3} \times 128$	2 + 1	Current Work
220	-0.0860	$32^3 \times 128$	2 + 1	Current Work

٩	Z ₄ Noise				
	Dilution Subspace	<i>t</i> ₀ - <i>t</i> Propagator	<i>t-t</i> Propagator		
	Time	Full	Interlace 16		
	Spin	Full	Full		
	LapH	Interlace 8	Interlace 8		
				(日本)	nac

Action:

- Anisotropic Clover Action
- Symanzik Improved Gauge Action
- $a_s/a_t = 3.5, a_s = 0.12$ fm
- Available and relevant gauge configurations:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f	
380	-0.0840	$16^3 \times 128$	2 + 1	First Application
360	-0.0840	$24^3 \times 128$	2 + 1	Current Work
220	-0.0860	$24^{3} \times 128$	2 + 1	Current Work
220	-0.0860	$32^3 \times 128$	2 + 1	Current Work

- Selected Dilution Schemes:
 - Z₄ Noise

	Dilution Subspace	t_0 -t Propagator	t-t Propagator
•	Time	Full	Interlace 16
	Spin	Full	Full
	LapH	Interlace 8	Interlace 8
	F		

Applications on Connected 2-pt Correlators

• Nucleon N :

- Connected Diagram
- 3 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

Applications on Connected 2-pt Correlators

• Nucleon N :

Connected Diagram

- 3 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors
• Nucleon N :

- Connected Diagram
- 3 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

• Nucleon N :

- Connected Diagram
- 3 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

• Nucleon N :

- Connected Diagram
- 3 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Connected Diagram
- 2 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

• Pion π :

Connected Diagram

- 2 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Connected Diagram
- 2 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Connected Diagram
- 2 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Connected Diagram
- 2 Noises, $1t_0$
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Disconnected Diagram
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

• Isoscalar Psuedoscalar η :

Disconnected Diagram

- 1 Noise, all t₀s
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Disconnected Diagram
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Disconnected Diagram
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Disconnected Diagram
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 Laplacian Eigenvectors

- Disconnected Diagram
- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

• Isoscalar Scalar σ :

Disconnected Diagram

- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Disconnected Diagram
- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Disconnected Diagram
- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Disconnected Diagram
- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Disconnected Diagram
- Vacuum Expectation Value subtracted
- 1 Noise, all t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

つ Q (~ 16/25

17/25

- Box Diagram
- 4 Noises, 4 t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

• $\pi\pi \to \pi\pi$ Correlator:

Box Diagram

- 4 Noises, 4 t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Box Diagram
- 4 Noises, 4 t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Box Diagram
- 4 Noises, 4 t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Box Diagram
- 4 Noises, 4 t_0 s
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

First Applications Applications on Multihadron Diagrams

Applications on Multihadron Diagrams: $\pi\pi o \pi\pi$

First Applications Applications on Multihadron Diagrams

Applications on Multihadron Diagrams: $\pi\pi o \pi\pi$

• $\rho \rightarrow \pi\pi$ Decay :

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, 4 t_0 s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

• $\rho \rightarrow \pi\pi$ Decay :

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, $4 t_0$ s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, 4 t_0 s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, 4 t_0 s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, 4 t_0 s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

- Triangle Diagram
- $\vec{p} = (0, 0, 1)$
- 2 sets of 3 Noises, 4 t_0 s each set
- 52 configs
- $V = 16^3 \times 128$, 32 eigenvectors

Applications on Multihadron Diagrams: $ho o \pi\pi$

Applications on Multihadron Diagrams: $ho o \pi\pi$

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$		

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$		

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$		

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$		

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	Lattice Size($N_x^3 \times N_t$)	

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	Lattice Size($N_x^3 \times N_t$)	

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used

$m_{\pi}(MeV)$	Lattice Size($N_x^3 \times N_t$)	

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f
360	-0.0840	$24^3 \times 128$	2 + 1
220	-0.0860	$24^3 \times 128$	2 + 1
220	-0.0860	$32^{3} \times 128$	2 + 1

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f
360	-0.0840	$24^3 \times 128$	2 + 1
220	-0.0860	$24^{3} \times 128$	2 + 1
220	-0.0860	$32^{3} \times 128$	2 + 1

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f
360	-0.0840	$24^3 \times 128$	2 + 1
220	-0.0860	$24^{3} \times 128$	2 + 1
220	-0.0860	$32^{3} \times 128$	2 + 1

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Summary

- The Stochastic LapH method provides a promising approach for multihadron & isoscalar calculations
- The Stochastic LapH method saves a lot of work compared with the LapH method
- $V = 16^3$: It is an alternative; Larger volumes: Ordinary LapH is not possible!

Current Work

- Generation of Quark Sources and Sinks
- Generation of Hadron "Source"s and "Sink"s
- Gauge Configurations used:

$m_{\pi}(MeV)$	m_{q_l}	Lattice Size($N_x^3 \times N_t$)	N_f
360	-0.0840	$24^3 \times 128$	2 + 1
220	-0.0860	$24^{3} \times 128$	2 + 1
220	-0.0860	$32^{3} \times 128$	2 + 1

- Hadronic Spectrum with Multiparticle states
- Isoscalar Spectrum

Q & A