Introduction	

Dynamical hadron masses scaling study

Quenched determination of quark masses 0000000

Summary 000

Scaling study of quenched quark mass using 2 HEX smeared fermions

Thorsten Kurth

Lattice 2010, July 15

Budapest-Marseille-Wuppertal Collaboration

Introduction	

Oynamical hadron masses scaling study

Quenched determination of quark masses 0000000

Summary 000

Outline

- 2 Dynamical hadron masses scaling study
- 3 Quenched determination of quark masses

Introduction •••••	tion Dynamical hadron masses scaling study Quenched determination of quark masses 000 000000		Summary 000
Smearing			
Why Sme	ear?		

- improves chirality of wilson fermions: eigenvalue spectrum closer to a chiral one
 - \rightarrow improved stability of dynamical simulations
 - \rightarrow suppressing exceptionals in quenched simulations
- simulations at smaller pion masses possible
- better agreement with perturbation theory (*c_{sw}* closer to 1) Hoffmann, Hasenfratz, Schaefer [PoSLAT 2007]

Introduction ○●○○	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 000
Smearing			
HEX sm	earing		

• HYP smearing Hasenfratz, Knechtli [Phys.Rev.D 2001]

- HMC requires differentiable smearing: replace APE-links with EXP(stout)-links Morningstar and Peardon [Phys.Rev.D 2004]
- We choose 2 HEX smearing steps with moderate smearing parameters

Introduction ○○●○	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 000
Locality			
Locality			

- sufficient for Symanzik scaling: doubler free and local action
- two notions of locality
 - local in coordinate space, i.e.

 $||D(x,y)|| < \text{const. } e^{-\lambda|x-y|}$

with $\lambda = \mathcal{O}(a^{-1})$: trivially fulfilled, only nearest neighbour coupling in our case

Iocality with respect to gauge fields, i.e.

$$\left\|\frac{\delta D(x,x)}{\delta U(z)}\right\| < \text{const. } e^{-\lambda|x-z|}$$

also with $\lambda = \mathcal{O}(a^{-1})$

• our action is local (and in fact even ultralocal)

Introduction	Dynamical hadron masses scaling study
0000	

Quenched determination of quark masses 0000000

Summary 000

Locality

Gauge field locality

Dynamical hadron masses scaling study $\bullet \circ \circ$

Quenched determination of quark masses

Summary 000

Determination of hadron masses

Setup for hadron masses scaling study

- $N_f = 3$ hadron mass scaling study at 4 betas (from $a \approx 0.06 \,\mathrm{fm}$ to $0.2 \,\mathrm{fm}$) and at least 4 masses per beta
- tree level improved Symanzik gauge action Lüscher, Weisz [Phys.Lett.B 1985] with smeared clover improved wilson operator
- RHMC with different optimizations \rightarrow cf. BMW [Phys.Rev.D 2009] for details
- concerning stability (mass gap), topology \rightarrow cf. also BMW [Phys.Rev.D 2009]
- valence sector: use same action and quark masses as in sea (unitary setup)
- compare to previously obtained 6 EXP results

Introduction 0000 Dynamical hadron masses scaling study $\circ \circ \circ$

Quenched determination of quark masses

Summary 000

Determination of hadron masses

Determination of hadron masses

- apply correlated cosh/sinh fits to correlators
- calculate PCAC-mass from plateau of $\langle \partial_0 A_0(t) P(0) \rangle / \langle P(t) P(0) \rangle$
- interpolate aM_N , aM_Δ in $m_{\rm PCAC}$ to obtain quantities at physically motivated ratio $M_\pi/M_\rho \doteq$

$$\sqrt{2(M_{K}^{
m phys})^2-(M_{\pi}^{
m phys})^2/M_{\phi}^{
m phys}}pprox 0.67$$

extrapolate resulting M_N, M_Δ to the continuum assuming O(αa) or O(a²) scaling

Figure: from BMW [Phys.Rev.D 2009] Introduction 0000 Dynamical hadron masses scaling study $\circ \circ \bullet$

Quenched determination of quark masses 0000000

Summary 000

Scaling plots for 6 EXP and 2 HEX smearing

Scaling Plots (6 EXP vs. 2 HEX and $\mathcal{O}(a^2)$ vs. $\mathcal{O}(\alpha a)$)

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 000
Renormalization			
Renorma	lization		

- \bullet quark masses Lagrangian parameters \rightarrow renormalization needed
- using non-perturbative RI-MOM scheme Martinelli et al. [Nucl.Phys.B 1995]: renormalization constant for lattice operator O(a) (gauge fixed to Landau gauge)

 $O(\mu) = Z_O(\mu a, g(a))O(a)$

impose renormalization condition

$$Z_O(\mu a, g(a)) Z_q^{-1}(\mu a, g(a)) \Gamma_O(pa)|_{p^2 = \mu^2} = 1$$

using

$$\Gamma_O(pa) = \frac{1}{12} \operatorname{Tr}(\Lambda_O(pa), P_O)$$

where

$$\Lambda_O(pa) = S^{-1}(pa) G_O(pa) S^{-1}(pa)$$

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 000
Renormalization			
Renormal	ization II		

- improve signal using trace subtraction Martinelli et al. [Phys.Rev.D 2000], Schierholz et al. [Nucl.Phys.B 2001], Martinelli et al. [Nucl.Phys.B 2001], Maillart, Niedermayer [hep-lat/0807.0030v1]: $S \rightarrow \overline{S} \doteq S \text{Tr}_D S/4$
- calculate vector current renormalization Z_V via the 3-point/2-point function ratio Göckeler et al. [Phys.Lett.B 2004]:

$$\zeta(t) \doteq \frac{\sum_{x} \langle \bar{P}(T/2) V_4(x,t) P(0) \rangle}{\langle \bar{P}(T/2) P(0) \rangle}$$

and using

 $(Z_V)_{3\rho t}(1+am^W) = |\zeta(t_0 > T/2) - \zeta(t_0 - T/2)|^{-1}$

- obtaining $(Z_q)_{RI}$ by calculating $(Z_q/Z_V)_{RI} \cdot (Z_V)_{3pt}$
- using Z_V^{cons} or Z_q' in RI-MOM instead yields same results but are more expensive

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 000
Renormalization			
Renorma	lization III		

- "Window condition" of RI-MOM: $\Lambda_{\rm QCD} \ll \mu \ll 2\pi/a \rightarrow$ safe using $\mu \leq \pi/(2a)$
- But: matching to continuum PT from $\mu\simeq 3\,{\rm GeV},$ not reachable on coarsest lattices.
- Idea: compute using only finest lattices $(\mu' > \mu'')$ $R(\mu', \mu'') \doteq \lim_{a \to 0} Z_S(\mu', a)/Z_S(\mu'', a)$
- compute renormalization factor on all lattices by $Z_S(\mu', a) \doteq R(\mu', \mu'') Z_S(\mu'', a)$
- calculate renormalized quark mass via $m^{VWI}(\mu') = (1 - am^W/2)m^W/Z_S(\mu')$, where $m^W = m_{\text{bare}} - m_{\text{crit}}$

Quenched quark mass scaling study

Setup for determination of the quenched quark mass

- generate quenched configs to compare against literature
- use the wilson plaquette action because very precise *r*₀-data available Necco, Sommer [Nucl.Phys.B 2002]
- use 5 betas (0.06 to 0.15 fm) and at least 4 masses at each, furthermore $M_{\pi}L > 4$ for all masses and betas ($L \approx 1.84$ fm)
- extrapolate $Z^{RI}_S(M^2_\pi,\mu)$ linearly in M^2_π to chiral limit $orall \mu$
- extrapolate Z_S^{RI} -ratios vs αa and a^2 using $\mu' = 3.5 \, {\rm GeV}$ and $\mu'' = 2.2 \, {\rm GeV}$
- extrapolate $m^{RI}(3.5\,{
 m GeV},a)$ linearly in lpha a and a^2
- convert $m^{RI}(3.5\,{\rm GeV})$ to $m^{\overline{MS}}(2\,{\rm GeV})$ perturbatively

Introduction	Dynamical	hadron	masses	scaling	study

Quenched determination of quark masses

Summary 000

Results

Renormalization factors

- left panel: universality of scalar renormalization (colored vertical bars correspond to $\mu = \pi/(2a)$)
- right panel: continuum extrapolation of Z_S-ratios on 3 finest lattices

Introduction	Dynamical	hadron	masses	scaling	study

Quenched d	etermination	of	quark	masses
00000000				

Results

Scaling plot

- $(m_s + m_{ud})r_0 = 0.2608(42)(43)$ in perfect agreement with Garden et al. [Nucl.Phys.B 2000] (0.261(9)), good agreement with JLQCD [Phys.Rev.Lett. 1999] (0.274(18)) and Hölbling, Dürr [Phys.Rev.D 2005] (0.312(28))
- can hardly distinguish between $\mathcal{O}(\alpha a)$ or $\mathcal{O}(a^2)$
- continuum limit: $m_s^{\overline{MS}}(2\text{GeV}) = 101.4(1.6)(1.7)$ ($r_0 = 0.49 \text{ fm}$ used)

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses $\circ \circ \circ \circ \circ \circ \bullet$	Summary 000
Error handling			
Error har	dling		

- statistical errors: carry out analysis on 2000 bootstrap samples with blocksize 1
- systematical errors: carry out analysis using 3 different fitranges of correlators and assuming $\mathcal{O}(\alpha a)$ or $\mathcal{O}(a^2)$ scaling and accounting for non-vanishing slope in PT matched data \rightarrow obtaining 18 different fits \rightarrow calculate distribution from those, weighted by quality-of-fit Q BMW [Science 2008]
 - mean gives: best estimate of central value
 - variance: systematical error
 - one can hold one source of systematical error fixed and vary the other ones \rightarrow disentangle systematic errors

roduction	Dynamical	hadron	masses	scaling	study

Summary

- 2 HEX action is ultralocal by construction
- scaling of hadron masses: very mild scaling and perfect agreement with previously used 6 EXP action Dürr et al. [Science 322,1224 (2008)]
- scaling of quark masses: fairly flat extrapolation, continuum limit in very good agreement with literature
- 2 HEX action has broad scaling region and small corrections
- for preliminary dynamical 2 HEX results, c.f. talks of Antonin Portelli, Alberto Ramos and Julien Frison

Introduction	Dynamical hadro	n masses	scaling	

Quenched determination of quark masses 0000000

Summary •00

Backup

Perturbative matching

• Matching of $\beta = 6.3$ data to $N_f = 0$ continuum PT

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary ○●○
Backup			
Topolog	y		

• Topological charge history for $N_f=2+1,~approx 0.05\,{
m fm}$ and $M_\pi=219(2){
m MeV}$

Introduction 0000	Dynamical hadron masses scaling study 000	Quenched determination of quark masses	Summary 00●
Backup			
Topology	v II		

- Left panel: topology dependence of quark mass renormalization factor Z_S^{RI}
- Left panel: topology dependence of $m_{
 m PCAC}$

ຣງ