An application of the variational analysis to calculate the meson spectral functions

H. Ohno for WHOT-QCD Collaboration

Lattice 2010 Villasimius, Sardinia, Italy, June 15, 2010

Plan of this talk

- Introduction
- Spectral functions via variational analysis
- Numerical results
 - Test in the free quark case
 - Results at zero temperature
 - Results at finite temperature
- Conclusions

Introduction : motivation

- Charmonia dissociation in Quark Gluon Plasma (QGP)
 - Sequential J/Ψ suppression
 - : Suppression of J/ Ψ is one of the important signals of QGP formation in heavy ion collisions such as RHIC and LHC. T. Matsui and H. Satz (1986)
 - : $\Psi' \rightarrow J/\Psi$ 10%, $\chi_c \rightarrow J/\Psi$ 30% L. Antoniazzi et al. [E705 Collaboration] (1993)
 - : Dissociation of excited states and P-wave states is also important.
- Meson spectral function (SPF) at finite temperature
 - has information of the in-medium meson properties.
- Current lattice studies e.g. A. Jackovac et al (2007)
 - calculate SPFs with Maximum Entropy Method (MEM)
 - S-wave states (η_c , J/ Ψ) seem to survive up to 1.5 T_c but may dissolve at very high temperature.
 - P-wave states (χ_c) seem to dissolve just above T_c .
 - Excited states have NOT investigated well yet.

It is necessary to check the results and also investigate excited states with the other methods.

Introduction : our approach

H. Ohno for WHOT-QCD Collaboration

- On a finite volume lattice
 - SPF consists of discrete spectra only
- Below T_c (the critical temperature)
 - There are some peaks corresponding to bound states.
- Above T_c
 - Bound states' peaks should exist if they still survive but the value of corresponding SPF can change.
 - Some scattering states may appear.
 - If a bound state dissolves, corresponding value of SPF should become zero.
- We investigate temperature dependence of SPFs
 - Not whole shape of SPFs but just the value of SPFs corresponding to each discrete spectra is needed.
 - Excited states should be investigated, too.
- Variational analysis
 - can extract the properties of some low-lying states.
- is well-suited for discrete spectra.
 An application of the variational analysis
 to calculate the meson spectral functions

Definition of SPFs

• Meson correlator

$$C(t)\equiv\sum_{ec{x}}\langle O^{\Gamma}(ec{x},t)O^{\Gamma}(ec{0},0)
angle$$

- Meson operator $O^{\Gamma}(\vec{x},t) \equiv \bar{q}(\vec{x},t)\Gamma q(\vec{x},t)$

$$\Gamma = \begin{cases} \gamma_5 & \text{Pseudo scalar (Ps)} \\ \gamma_i & \text{Vector (Ve)} \\ \mathbf{1} & \text{Scalar (Sc)} \\ \gamma_5 \gamma_i & \text{Axial vector (Av)} \\ & i = 1, 2, 3 \end{cases}$$

• SPF

$$C(t) = \sum_{k} \rho(m_k) \frac{\cosh[m_k(t - N_t/2)]}{\sinh[m_k N_t/2]}$$

$$\rho(m_k) \equiv (2\pi)^3 \sum_{m,n} \langle E_m, \vec{p}_m | O^{\Gamma} | E_n, \vec{p}_n \rangle \langle E_n, \vec{p}_n | O^{\Gamma\dagger} | E_m, \vec{p}_m \rangle$$
$$\times \left(1 - e^{-(E_n - E_m)/T} \right) \frac{e^{-E_m/T}}{Z} \delta^{(3)}(\vec{p}_n - \vec{p}_m) \delta(M_k - E_n + E_m)$$

H. Ohno for WHOT-QCD Collaboration

SPFs via variational analysis

 Smeared meson operator A_0 A_1 A_{2} A_3 0.02 0.05 0.10 ∞ $O_i^{\Gamma}(\vec{x},t) \equiv \sum \omega_i(\vec{y})\omega_i(\vec{z})\bar{q}(\vec{x}+\vec{y},t)\Gamma q(\vec{x}+\vec{z},t)$ point operator Gaussian smearing function $\omega_i(\vec{x}) \equiv e^{-A_i ||\vec{x}||^2}$ $i = 1, 2, \cdots, N_{\text{state}}$: approximate number of states Effective mass SPF correlator matrix $V \equiv [oldsymbol{v}_1, oldsymbol{v}_2, \cdots, oldsymbol{v}_{N_{ ext{state}}}]$ $C(t) \equiv \left[\sum_{\vec{x}} \langle O_i^{\Gamma}(\vec{x},t) O_j^{\Gamma}(\vec{0},0)^{\dagger} \rangle \right]_{i,i=1}^{N_{\text{state}}} \left[\begin{array}{c} V = [0_1, 0_2, \cdots, 0_{N_{\text{state}}}] \\ C(t) = C(t_0) V \Lambda(t,t_0) V^{-1} \end{array} \right]$ generalized eigenproblem $C(t)\boldsymbol{v}_{k} = \lambda_{k}(t,t_{0})C(t_{0})\boldsymbol{v}_{k}$ $\lambda_k(t, t_0) = \frac{\cosh[m_k(t - N_t/2)]}{\cosh[m_k(t_0 - N_t/2)]}$

 $\left[\Lambda(t,t_0) \equiv \operatorname{diag}[\lambda_1(t,t_0),\lambda_2(t,t_0),\cdots,\lambda_{N_{\text{state}}}(t,t_0)]\right]$ point-point component $C_{00}(t) = \sum_{k} \rho_{00}(m_k) \frac{\cosh[m_k(t - N_t/2)]}{\sinh[m_k N_t/2]}$

 $\rho_{00}(m_k) = (C(t_0)V)_{0k}V_{k0}^{-1}\frac{\sinh[m_kN_t/2]}{\cosh[m_k(t_0-N_t/2)]}$

H. Ohno for WHOT-QCD Collaboration

An application of the variational analysis to calculate the meson spectral functions A_6

0.25

 A_{A}

0.15

 A_{5}

0.20

Numerical results (1) : Test in the free quark case

Both m_k and ρ_{00} of variational analysis data are consistent with their analytic solutions up to the second low-lying state.

H. Ohno for WHOT-QCD Collaboration

Lattice setup

- Action
 - Standard plaquette gauge action
 - O(a)-improved Wilson fermion action
 - Quenched approximation
- Lattice
 - Anisotropic lattice : anisotropy $a_s/a_t = 4$
 - $-a_s = 0.0970(5) \text{ fm} (a_s^{-1} = 2.030(13) \text{ GeV})$
 - $N_s = 20$
 - $N_t = 160$ (zero temperature), 32 (0.88 T_c), 26 (1.1 T_c), 20 (1.4 T_c)
- Number of gauge configurations
 - for zero temperature : 299
 - for finite temperature : 800
- Coulomb gauge fixing

H. Ohno for WHOT-QCD Collaboration An application of the variational analysis to calculate the meson spectral functions

Temperature is changed by means of changing *N*_t

Effective mass (Ve channel)

The difference of colors indicates the difference of $N_{\text{state.}}$ Arrows indicate fitted value with fit range shown by black bars.

 N_{state} = 5,6,7 data converge on almost the same value for both the ground state and the excited state.

H. Ohno for WHOT-QCD Collaboration

SPF (Ve channel)

The difference of colors indicates the difference of $N_{\text{state.}}$ Arrows indicate fitted value with fit range shown by black bars. $N_{\text{state}} = 5,6,7$ data converge on almost the same value for both the ground state and the excited state.

H. Ohno for WHOT-QCD Collaboration

Comparison with MEM (Ve channel)

All data corresponding to the ground state converge on almost the same point. The data corresponding to the first excited state converge as N_{state} increases.

H. Ohno for WHOT-QCD Collaboration

Comparison with MEM (Ps, Sc, Av channel)

 $\rho(\omega)$ 0.5 MEM Θ N_{state}=3 +++++ 0.4 N_{state}=5 ··· ··· N_{state}=6 N_{state}=7 0.3 Av, 2P 0.2 $\chi_{c1}(1P)$ 0 0.1 **BX** 0.35 0.4 0.45 0.5 0.55 0.6 ω

All data corresponding to the ground state converge on almost the same point.

The data corresponding to the first excited state converge as N_{state} increases.

H. Ohno for WHOT-QCD Collaboration

Numerical results (3) : at finite temperature 1

Temperature dependence (Ve channel, ground state)

The difference of colors indicates the difference of temperature (0-1.4 T_c).

There seem to be no clear temperature dependence for the effective masses.

The value of SPF may change but does NOT become zero.

H. Ohno for WHOT-QCD Collaboration

Numerical results (3) : at finite temperature 2

Temperature dependence (Ps channel, ground state)

The difference of colors indicates the difference of temperature (0-1.4 T_c).

There seem to be no clear temperature dependence for the effective masses. The value of SPF may change but does NOT become zero.

H. Ohno for WHOT-QCD Collaboration

Conclusions

- We calculate meson SPFs with variational analysis.
- At zero temperature,
 - we can extract SPFs corresponding to both the ground state and the first excited state well for Ps, Ve, Sc and Av channel.
 - we show that the value of SPF corresponding to the first excited state can be improved by increasing N_{state.}
- At finite temperature,
 - there seem to be no clear temperature dependence for the effective masses of both the ground state and the first excited state of S-wave up to $1.4 T_c$.
 - the value of SPF corresponding to the ground state and first excited state of S-wave may change but does NOT become zero up to 1.4 T_c .
 - there is no clear evidence of dissociation for the S-wave ground state up to $1.4T_{\rm c}$.
 - more accurate data quality is needed to investigate SPF at higher temperature region and for P-wave states.

H. Ohno for WHOT-QCD Collaboration