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QCD Low Energy Constants (LECs)

QCD low energy dynamics is described by ChPT:

e assume chiral symmetries are spontaneously broken = m, (K, 1)
are the PseudoGoldstone Bosons (PGBs)

e the form of interactions is constrained by symmetry

e the couplings (LECs) are unconstrained by symmetry: contain the
UV information and depend on N;, my, m¢, as, (ms)

e at a given order in Mpgg /A, ppee/Ny the number of LECs is finite.
At LO the LECs are the pion decay constant F and the quark
condensate ¥ in the chiral limit:

_F f t f 2i€
L Tr[(f? Uo, U + Tr[/\/lU + UM U=exp v

In this work we explore the determination of some LECs by matching the
distribution of the lowest eigenvalues of the Dirac operator as predicted
by a universality class of Random Matrix Theories (RMT) with mixed
action Lattice calculations.
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Outline

ChPT in finite volume
® c-regime
e mixed-regime

e RMT

e validity of the Zero modes Chiral Theory
e scaling with mse, in mixed regime

Results

e test of RMT (ratios of eigenvalues)
e determination of Lg and

Conclusions



Introduction ChPT RMT Results Conclusions ChPT in finite volume

ChPT in finite volume

No change in the Lagrangian or in LECs, provided LA, > 1

p-regime power counting

mg ~ M2 ~ p* ~ 1/1? as in oo volume

”
e-regime power counting

mg ~ M2~ p* ~1/L*

The dependence on the mass is suppressed = less LECs appear for a
given observable at a given order, with respect to p-regime

v
mixed-regime power counting

my~pt~1/1Y m o~ p? ~ 1)1

e wrt p-regime: less LECs appear for a given observable at a given
order

e wrt e-regime: more LECs appear for a given observable at a given
order

\
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e-regime

e parametrization for pion field [Gasser Leutwyler 87]:
U= UpeF / dx* TH[T2€(x)] =0 Up € SU(Ny)
e non trivial dependence on topological sector v [Leutwyler Smilga 92]
27 .
(0), = / dge="?(0(9)) 6 = vacuum angle
0

e at NLO there is factorization of zero Uy and non-zero modes £ =
define a zero modes partition functional (u; = X Vm;):

ZM[{)] = /

U(Nr)

dUy (detUp)” exp <Z2\/Tr [MUO + UJMD

The solution is known in terms of Bessel functions. Other necessary
integrals are obtained by deriving with respect to the quark masses.
[Brower et al. 1982, Leutwyler & Smilga 1992, Jackson et al. 1996]
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Mixed regime

M = < M, 0 ) mp ~ L2 (e-regime) m; ~ L=* (p-regime)

0 My
~—
N; Ny

for pions corresponding to SU(N;) M2, ~ L=*
for other pions M2, ~ L=2 in QCD

> _ _ _
bezﬁ(ma+mb) Mi~ L% My~ 172 My~ L2
1 1 1
_ NN,
o Tn:4/2(N1/+7Vh dlag{ .”7ﬁ17_ﬁh7.”,_ﬁh} has an N,

N, Ny
dependent mass:

NM2, + NpM3
Np+ N,
in a PQ theory with zero sea quarks in the e-regime, N; = 0 and

/\/1727 ~ L=* (like the i’ does not decouple in a quenched theory)
[F. B. Hernandez 07, Damgaard Fukaya 07, F.B: et-al. 08]

2
M, = My =mp Ly,
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Factorization for mixed regime

Mimicking e-regime, one convenient parametrization is:

U= ( o 10h ) % einTy Us € SU(N)
/dx4 Tr[T2¢(x)] = /dx4 Tr[T"(x)] =0 T? € SU(Ny)

e at fixed topology the n mode is coupled to 6 and becomes
perturbative

e non perturbative and perturbative modes factorize at LO

This formalism can be applied to PQ cases using the Replica Method
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Random Matrix Theory (RMT) and QCD in e-regime

Consider the partition functional of a RMT:

Z,[{m}] :/dwﬁdet(ib+m,)exp <g/Tr V(Dz)) b= < .?V ng >

I=1

o the W matrices have rectangular size N x (N + v)

° V(D2) is an arbitrary potential such that the spectral density p
satisfies: limg_  A(A) # 0 where X are the eigenvalues of D

It has been shown that in the limit N — oo, if fiy = 2N/ p(0):

5 p (M) _ v Vv gl

21 n=mzy = Z8Uul = [ dUs det(Un)” exp (S5 Tr [MiUo + UM ] ]
U(Np)

[Shuryak Verbaarschot 92]
RMT = zero modes partition functional in e-regime at LO = ZMChT
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Random Matrix Theory (RMT) and QCD in e-regime

Consider the partition functional of a RMT:

2, [{m}] = /dwﬁdet(imm,)exp (—/;/Tr V(D2)> b= ( S/ VKT )

=1

e the W matrices have rectangular size N x (N + v)

° V(Dz) is an arbltrary potential such that the spectral denS|ty 0
satisfies: limg_ 4 A(X) # 0 where X are the eigenvalues of D

The replica limit N, — 0 of this integral is:

A s —mzy = ZM[{u)] = / dUp det(Up)" exp <—5Tr [M,Uo + UOMTD
GI(Ny [Ny +Ns,)
[Damgaard et al 98]
All the conclusions that follow can be extended to the Quenched and PQ
theories using this modification.
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Matching of QCD in e-regime and ZMChT

In the e-regime at fixed v the nonzero momentum modes can be
integrated out: My < 2Tﬁ

ZEhPT(e) — dUs df det(Uo)" exp (%TI’ [MIUO + UJM;T]) e Jd*xTr[8,£8,€]
U(Ny)

o</ dUp det(Up)" exp <%Tr [M,Uo + UJM}]) = ZZMOT ]
U(Ny)

E
AN
Ay —_
MXEE " chpT | QchpT
i
¥
1/L i
T ZMChT
N|

1/FL2 A, M
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Matching of QCD in e-regime and ZMChT

This matching can be extended to:
e mixed regime: integrating out the zero modes of heavier p-regime

PGBs

e NLO: zero and nonzero modes are coupled
b L
CPrm = 4Tk [M, (52U0 n Ug§2)] —1620 Tr [My] Tr [M, (Uo n UT)]
At NLO the integration of the “heavy modes induce a renormalization
of the X: ZZMT[{1} o o ZZMMT[{i}]

E

A
A ixed
€ MXEE " chpT | QchpT
1 "
i i
1/L i H
g T ZMChT
N|+Nh N|

1/FL2 A, M
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Predictions of RMT

There are analytical calculations of:

e the microscopic spectral density p*((; {1}), where &; = 2NX;5(0)
[Shuryak et al., Damgaard]:
e ex. the quenched result: p”(;0) = % [J,,(CA)2 - J,,H(f)Jl,,l(f)}
e the joint probability distributions for N eigenvalues
p” (G, - - ni {n})

o probability distribution of the k-th smallest eigenvalue (j, pZ(QA‘; {1}
[Nishigaki et al.]

o flavor-topology duality (strictly valid at m; = 0): p,‘(’(f; {0}) depends
on Nf and v only through N¢ + |v|.
e In the cases where the quantities have been computed in ChPT in
the e-regime (eg the microscopic spectral density) the results agree if
G=%SVN =% Vm
where )\; are the eigenvalues of the Dirac operator. Matching RMT
predictions and lattice results allows to extract &



Introduction ChPT RMT Results Conclusions

Matching in the Quenched theory

V=0 vl v=2 Check of matching RMT-QCD
:t first performed in the Quenched
theory
;t; [Edwards et al. 99,... Giusti et
. | al. 03]
;;“1 : |. N - | e diamonds: Lattice data
ys - -7 - e horizontal bars: RMT
[Giusti et al. 03]
Since:

(bt = ZV(Abep

o ratios of k-th over I-th eigenvalues (\¢)"/(\/)*" are parameter free

predictions

e the X (and other LECs) extracted in this framework would be the
one of the Quenched theory, ¥ p,—g

In the dynamical case check performed for p(\) [Fukaya et al 07] .
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Simulation

Mixed action approach: B =5.3, csw = 1.90952, V = 48 x 243, a = 0.0784(10) fm

e sea: O(a) improved | label | & aMss Negg

Wilson quarks (CLS | Da 0.13620 | 0.1695(14) | 86
configurations: | 08| 13622 | amaeaa) | 246 (Do 159)
N, =2, N; = 0) [Del| ~° ' ' ba:

. (Dep: 87)
Debbio et al. 2007]

e valence: overlap Table: Simulation parameters.

We match with the Quenched RMT prediction: but this time
Y =5(Z|n=2, Leln=2)

DS

E

e overlap allow a determination of v :

through the index theorem: »
V=ngR—ng u

ng,. is the number of right, left handed :
zero modes :

Figure: Distribution’ of topological
charge for Ds
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Locality Check

<>

72 %(1 —AATATVA) A=1+s5-—aDW)

((x) =Sign(A)n(x)  7a(x) = dgdar ..

f(r) = max{\|§(x)||2 Illx=ylli=r} o tune s to maximize B

.]|1 is the “taxi driver” distance

— —Br g
g(r) = Ae e OK in quenched case [Hernandez et al.]
1 1
RO, "
R, e "
1e-05 \{k\\ 1e-05 - ';'.’
. R S
1e-15 \ % ¥’££Hf1[
o, 1e-15 | oy, Iny,
1e-20 14!?121[11[
............ 1020 | [’3535,11[11[1
1e-25 \\ x,:;;xx [HI[
\\ ’Kf-...uléi--«
=y Rl 10 20 30 40 50 60
0 10 20 30 40 50 60
tla L
® precision of Sign(A) ~ 1078 = ||¢(x)|[? ® |ocality works better for s = 0.4
; ; 2 —16 . .
calculated reliably until [[¢(x)|]* > 1071° = ® B is generally smaller than its quenched

fitrange: 14-28 analog
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Numerical Results for eigenvalues ratios 1
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Figure: ratios of k-th eigenvalues at different topological sectors for Mss = 377
MeV (left) and Mss = 257 (right). The black line indicates the qRMT
prediction

Rather good agreement with Quenched RMT predictions
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Numerical Results for eigenvalues ratios 2
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Figure: ratios of Dirac eigenvalues for v = 1 (left) and v = 2 (right). k// is a
shorthand for (Ax)/(\/} The horizontal bar indicates the qRMT prediction

Rather good agreement with Quenched RMT predictions except for ratios
of eigenvalues at fixed v involving the lowest eigenvalue.
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LECs from matching in mixed regime
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Figure: ratios of k-th eigenvalues at M; = 257 MeV M, = 377 MeV

® Ratios of k-th eigenvalues at different masses independent from v and k:

(C)aqrmt = (M) V(A)Gop(Min) = Rz = = ;

(M) (M) X(M2)

(M)

(A (M-)
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LECs from matching in mixed regime
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Figure: Left: (PRELIMINARY) £(my). Input: F =90 MeV. £a° = 0.00103,
L¢(M,) = —0.000074. Right: >(Ms) as obtained at different v. Mp, = 426
MeV, Mp, = 379 MeV, Mp, = 257 MeV

B2 | log(uL) r Ny M Ny
—11 16N Ls log (=) ) - M2, L
+ = (N,,+ 8x2N, | ) = Gy 22 e (M)

X
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Conclusions and Outlook

We have tested the matching between Quenched RMT and Partially
Quenched QCD using a mixed action approach:

e results for ratios of eigenvalues in agreement with RMT predictions
o the scaling with mge, is as predicted by the mixed regime approach

e from chiral fits of the effective condensate we could extract Lg, ¥
(putting F = 90 as input)

Outlook:
e calculate renormalization factor Zs to extract ¥

e analyze 2-point functions results (in mixed regime sensitive to: F, X,
La, Le)
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