Mixed action computations on fine dynamical lattices

in collaboration with Nicolas Garron, Pilar Hernandez, Silvia Necco and Carlos Pena

Bernardoni Fabio

IFIC Universidad de Valencia

14/06/09

QCD Low Energy Constants (LECs)

QCD low energy dynamics is described by ChPT:

- assume chiral symmetries are spontaneously broken $\Rightarrow \pi$, (K, η) are the PseudoGoldstone Bosons (PGBs)
- the form of interactions is constrained by symmetry
- the couplings (LECs) are unconstrained by symmetry: contain the UV information and depend on N_l , m_b , m_c , α_s , (m_s)
- at a given order in M_{PGB}/Λ_χ, p_{PGB}/Λ_χ the number of LECs is finite. At LO the LECs are the pion decay constant F and the quark condensate Σ in the chiral limit:

$$\mathcal{L}_{\chi} = \frac{F^2}{4} \mathrm{Tr}[\partial_{\mu} U \partial_{\mu} U^{\dagger}] + \frac{\Sigma}{2} \mathrm{Tr}[\mathcal{M} U^{\dagger} + U \mathcal{M}^{\dagger}] \quad U = \exp\left(\frac{2i\xi}{F}\right)$$

In this work we explore the determination of some LECs by matching the distribution of the lowest eigenvalues of the Dirac operator as predicted by a universality class of Random Matrix Theories (RMT) with mixed action Lattice calculations.

Outline

- ChPT in finite volume
 - *e*-regime
 - mixed-regime
- RMT
 - validity of the Zero modes Chiral Theory

- scaling with msea in mixed regime
- Results
 - test of RMT (ratios of eigenvalues)
 - determination of L_6 and Σ
- Conclusions

ChPT in finite volume

No change in the Lagrangian or in LECs, provided $L\Lambda_\chi\gg 1$

p-regime power counting

$$m_q \sim M_\pi^2 \sim p^2 \sim 1/L^2$$
 as in ∞ volume

 ϵ -regime power counting

$$m_q \sim M_\pi^2 \sim p^4 \sim 1/L^4$$

The dependence on the mass is suppressed \Rightarrow less LECs appear for a given observable at a given order, with respect to p-regime

mixed-regime power counting

$$m_l \sim p^4 \sim 1/L^4$$
 $m_h^2 \sim p^2 \sim 1/L^2$

- wrt p-regime: less LECs appear for a given observable at a given order
- wrt ϵ -regime: more LECs appear for a given observable at a given order

ϵ-regime

• parametrization for pion field [Gasser Leutwyler 87]:

$$U = U_0 e^{\frac{2i\xi}{F}} \qquad \int dx^4 \operatorname{Tr}[T^a \xi(x)] = 0 \qquad U_0 \in SU(N_f)$$

• non trivial dependence on topological sector ν [Leutwyler Smilga 92]

$$\langle O
angle_
u = \int_0^{2\pi} d heta \, e^{-i
u heta} \langle O(heta)
angle \qquad heta = ext{vacuum angle}$$

at NLO there is factorization of zero U₀ and non-zero modes ξ ⇒ define a zero modes partition functional (μ_i ≡ ΣVm_i):

$$\mathcal{Z}_{\nu}^{(N_{f})}[\{\mu\}] = \int_{U(N_{f})} dU_{0} \, (\det U_{0})^{\nu} \exp\left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M} U_{0} + U_{0}^{\dagger} \mathcal{M}\right]\right)$$

The solution is known in terms of Bessel functions. Other necessary integrals are obtained by deriving with respect to the quark masses. [Brower et al. 1982, Leutwyler & Smilga 1992, Jackson et al. 1996]

Mixed regime

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_{l} & 0\\ 0 & \mathcal{M}_{h} \\ \vdots \\ N_{l} & \vdots \\ N_{h} \end{pmatrix} \qquad m_{h} \sim L^{-2} \ (\epsilon\text{-regime}) \ m_{l} \sim L^{-4} \ (\text{p-regime})$$

• for pions corresponding to $SU(N_l)$ $M_{ab}^2 \sim L^{-4}$

• for other pions $M_{2b}^2 \sim L^{-2}$ in QCD

$$M_{ab}^2 = rac{\Sigma}{F^2} (m_a + m_b)$$
 $M_{II}^2 \sim L^{-4}$ $M_{hI}^2 \sim L^{-2}$ $M_{hh}^2 \sim L^{-2}$

•
$$T_{\eta} \equiv \sqrt{\frac{N_l N_h}{2(N_l + N_h)}} \operatorname{diag}\{\underbrace{\frac{1}{N_l}, \dots, \frac{1}{N_l}}_{N_l}, \underbrace{-\frac{1}{N_h}, \dots, -\frac{1}{N_h}}_{N_h}\}$$
 has an N_l

dependent mass:

$$M_{\eta}^2 = \frac{N_I M_{hh}^2 + N_h M_{II}^2}{N_h + N_I} \qquad \mathcal{M}_{h,I} = m_{h,I} \mathbf{1}_{h,I}$$

• in a PQ theory with zero sea quarks in the ϵ -regime, $N_l = 0$ and $M_n^2 \sim L^{-4}$ (like the η' does not decouple in a quenched theory) [F. B. Hernandez 07, Damgaard Fukaya 07, F.B. et al. 08] → (=) = , oq (

Factorization for mixed regime

Mimicking ϵ -regime, one convenient parametrization is:

$$U = \begin{pmatrix} U_0 & 0 \\ 0 & \mathbf{1}_h \end{pmatrix} e^{\frac{2i\xi}{F}} e^{i\eta T_{\eta}} \qquad \qquad U_0 \in SU(N_l)$$
$$\int dx^4 \operatorname{Tr}[T^a \xi(x)] = \int dx^4 \operatorname{Tr}[T^{\eta} \xi(x)] = 0 \qquad \qquad T^a \in SU(N_l)$$

- at fixed topology the η mode is coupled to θ and becomes perturbative
- non perturbative and perturbative modes factorize at LO

This formalism can be applied to PQ cases using the Replica Method

Random Matrix Theory (RMT) and QCD in ϵ -regime

Consider the partition functional of a RMT:

$$\hat{\mathcal{Z}}_{\nu}[\{\hat{m}_i\}] = \int dW \prod_{l=1}^{N_l} \det(i\hat{D} + \hat{m}_l) \exp\left(-\frac{N}{2} \operatorname{Tr} V(\hat{D}^2)\right) \quad \hat{D} = \begin{pmatrix} 0 & W^{\dagger} \\ W & 0 \end{pmatrix}$$

- the W matrices have rectangular size N imes (N+
 u)
- $V(\hat{D}^2)$ is an arbitrary potential such that the spectral density $\hat{\rho}$ satisfies: $\lim_{\hat{\lambda}\to 0} \hat{\rho}(\hat{\lambda}) \neq 0$ where $\hat{\lambda}$ are the eigenvalues of \hat{D}

It has been shown that in the limit $N \to \infty$, if $\hat{\mu}_I \equiv 2N \hat{m}_I \hat{\rho}(0)$:

$$\hat{\mathcal{Z}}_{\nu}[\{\hat{m}\}]_{\hat{\mu}_{i}=m_{i}\Sigma V} = \mathcal{Z}_{\nu}^{(N_{l})}[\{\mu\}] \equiv \int_{U(N_{l})} dU_{0} \, \det(U_{0})^{\nu} \exp\left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M}_{l}U_{0} + U_{0}^{\dagger}\mathcal{M}_{l}^{\dagger}\right]\right)$$

[Shuryak Verbaarschot 92] RMT = zero modes partition functional in ϵ -regime at LO = ZMChT

Random Matrix Theory (RMT) and QCD in ϵ -regime

Consider the partition functional of a RMT:

$$\hat{\mathcal{Z}}_{
u}[\{\hat{m}_i\}] = \int dW \prod_{l=1}^{N_l} \det(i\hat{D} + \hat{m}_l) \exp\left(-rac{N}{2} \operatorname{Tr} V(\hat{D}^2)
ight) \quad \hat{D} = \left(egin{array}{cc} 0 & W^\dagger \ W & 0 \end{array}
ight)$$

- the W matrices have rectangular size N imes (N+
 u)
- $V(\hat{D}^2)$ is an arbitrary potential such that the spectral density $\hat{\rho}$ satisfies: $\lim_{\hat{\lambda}\to 0} \hat{\rho}(\hat{\lambda}) \neq 0$ where $\hat{\lambda}$ are the eigenvalues of \hat{D}

The replica limit $N_v \rightarrow 0$ of this integral is:

$$\hat{\mathcal{Z}}_{\nu}[\{\hat{m}\}]_{\hat{\mu}_{i}=m_{i}\Sigma V} = \mathcal{Z}_{\nu}^{(N_{l})}[\{\mu\}] \equiv \int_{\mathcal{G}^{l}(N_{\nu}|N_{\nu}+N_{s_{l}})} dU_{0} \det(U_{0})^{\nu} \exp\left(\frac{\Sigma V}{2}S\mathrm{Tr}\left[\mathcal{M}_{l}U_{0}+U_{0}^{\dagger}\mathcal{M}_{l}^{\dagger}\right]\right)$$

[Damgaard et al 98]

All the conclusions that follow can be extended to the Quenched and PQ theories using this modification.

Introduction ChPT RMT Results Conclusions

Matching of QCD in ϵ -regime and ZMChT

In the $\epsilon\text{-regime at fixed }\nu$ the nonzero momentum modes can be integrated out: $M_{\rm II} < \frac{2\pi}{L}$

$$\begin{aligned} \mathcal{Z}_{\nu}^{ChPT(\epsilon)} &= \int_{U(N_l)} dU_0 \, d\xi \, \det(U_0)^{\nu} \exp\left(\frac{\Sigma V}{2} \operatorname{Tr} \left[\mathcal{M}_l U_0 + U_0^{\dagger} \mathcal{M}_l^{\dagger}\right]\right) \, e^{-\int d^4 x \operatorname{Tr} \left[\partial_{\mu} \xi \partial_{\mu} \xi\right]} \\ &\propto \int_{U(N_l)} dU_0 \, \det(U_0)^{\nu} \exp\left(\frac{\Sigma V}{2} \operatorname{Tr} \left[\mathcal{M}_l U_0 + U_0^{\dagger} \mathcal{M}_l^{\dagger}\right]\right) \equiv \mathcal{Z}_{\nu}^{ZMChT}[\{\mu\}] \end{aligned}$$

Matching of QCD in ϵ -regime and ZMChT

This matching can be extended to:

- mixed regime: integrating out the zero modes of heavier p-regime PGBs
- NLO: zero and nonzero modes are coupled

$$\mathcal{L}_{ChPT(m)}^{NLO} = \ldots + \frac{\Sigma}{F^2} \mathrm{Tr} \left[\mathcal{M}_I \left(\xi^2 U_0 + U_0^{\dagger} \xi^2 \right) \right] - 16 \frac{\Sigma L_6}{F^4} \mathrm{Tr} \left[\mathcal{M}_h \right] \mathrm{Tr} \left[\mathcal{M}_I \left(U_0 + U_0^{\dagger} \right) \right] + \ldots$$

At NLO the integration of the "heavy modes" induce a renormalization of the Σ : $\mathcal{Z}_{\nu}^{ZMChT}[\{\mu\}]_{NLO} \propto \mathcal{Z}_{\nu}^{ZMChT}[\{\tilde{\mu}\}]$

Predictions of RMT

There are analytical calculations of:

• the microscopic spectral density $\rho^{\nu}(\hat{\zeta}; \{\mu\})$, where $\hat{\zeta}_i \equiv 2N\hat{\lambda}_i\hat{\rho}(0)$ [Shuryak et al., Damgaard]:

• ex. the quenched result: $\rho^{\nu}(\hat{\zeta}; \mathbf{0}) = \frac{\hat{\zeta}}{2} \left[J_{\nu}(\hat{\zeta})^2 - J_{\nu+1}(\hat{\zeta}) J_{\nu-1}(\hat{\zeta}) \right]$

- the joint probability distributions for N eigenvalues $\rho^{\nu}(\hat{\zeta}_1, \dots, \hat{\zeta}_N; \{\mu\})$
- probability distribution of the k-th smallest eigenvalue $\hat{\zeta}_k$, $p_k^{\nu}(\hat{\zeta}; \{\mu\})$ [Nishigaki et al.]
 - flavor-topology duality (strictly valid at m_i = 0): p^ν_k(ζ̂; {0}) depends on N_f and ν only through N_f + |ν|.

• In the cases where the quantities have been computed in ChPT in the *ϵ*-regime (eg the microscopic spectral density) the results agree if

$$\hat{\zeta}_i = \tilde{\Sigma} V \lambda_i \qquad \hat{\mu}_i = \tilde{\Sigma} V m_i$$

where λ_i are the eigenvalues of the Dirac operator. Matching RMT predictions and lattice results allows to extract $\tilde{\Sigma}$

Matching in the Quenched theory

Since:

$$\langle \hat{\zeta}_k \rangle_{\mathrm{RMT}}^{\nu} = \tilde{\Sigma} V \langle \lambda_k \rangle_{\mathrm{QCD}}^{\nu}$$

- ratios of k-th over l-th eigenvalues $\langle\lambda_k\rangle^\nu/\langle\lambda_l\rangle^{\nu'}$ are parameter free predictions
- the Σ (and other LECs) extracted in this framework would be the one of the Quenched theory, $\Sigma_{N_f=0}$

-

In the dynamical case check performed for $\rho(\lambda)$ [Fukaya et al 07] .

Simulation

Mixed action approach:

valence: overlap

• sea: O(a) improved Wilson quarks (CLS configurations: $N_h = 2, N_l = 0$) [Del Debbio et al. 2007]

$eta =$ 5.3, $c_{ m sw} =$ 1.90952, $V =$ 48 $ imes$ 24 ³ , $a =$ 0.0784(10) fm				
label	κ	a M_{ss}	$N_{ m cfg}$	
D ₄	0.13620	0.1695(14)	86	
D_5	0.13625	0.1499(15)	169	
D ₆	0.13635	0.1183(37)	246	(D _{6a} : 159)
				(D _{6b} : 87)

Table: Simulation parameters.

We match with the Quenched RMT prediction: but this time $\tilde{\Sigma} = \tilde{\Sigma}(\Sigma|_{N_f=2}, L_6|_{N_f=2})$

 overlap allow a determination of ν through the index theorem:

$$\nu = n_R - n_L$$

 $n_{R,L}$ is the number of right, left handed zero modes

Locality Check

$$\mathcal{D}^{(O)} = rac{1}{a} (1 - A(A^{\dagger}A)^{-1/2}), \qquad A = 1 + s - a \mathcal{D}^{(W)}$$

 $\zeta(x) \equiv \operatorname{Sign}(A)\eta(x) \qquad \eta_{\alpha}(x) = \delta_{xy}\delta_{\alpha 1}$

$$f(r) \equiv \max\{||\zeta(x)||^2 \mid ||x - y||_1 = r\}$$
$$g(r) \equiv Ae^{-Br}$$

$$||\dots||_1$$
 is the "taxi driver" distance

- tune s to maximize B
- OK in quenched case [Hernandez et al.]

- locality works better for s = 0.4
- B is generally smaller than its quenched analog
 → < □ → < □ → < ≡ → < ≡ → < ≡ → < □

Numerical Results for eigenvalues ratios 1

Figure: ratios of k-th eigenvalues at different topological sectors for $M_{ss} = 377$ MeV (left) and $M_{ss} = 257$ (right). The black line indicates the qRMT prediction

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Rather good agreement with Quenched RMT predictions

Numerical Results for eigenvalues ratios 2

Figure: ratios of Dirac eigenvalues for $\nu = 1$ (left) and $\nu = 2$ (right). k/l is a shorthand for $\langle \lambda_k \rangle / \langle \lambda_l \rangle$ The horizontal bar indicates the qRMT prediction

Rather good agreement with Quenched RMT predictions except for ratios of eigenvalues at fixed ν involving the lowest eigenvalue.

Introduction ChPT RMT Results Conclusions

LECs from matching in mixed regime

Figure: ratios of k-th eigenvalues at $M_1 = 257$ MeV $M_2 = 377$ MeV

• Ratios of k-th eigenvalues at different masses independent from ν and k:

$$\langle \zeta_k \rangle_{qRMT}^{\nu} = \tilde{\Sigma}(M_{hh}) V \langle \lambda_k \rangle_{QCD}^{\nu}(M_{hh}) \Rightarrow R_{\Sigma} \equiv \frac{\langle \lambda_k \rangle^{\nu}(M_1)}{\langle \lambda_k \rangle^{\nu}(M_2)} = \frac{\tilde{\Sigma}(M_2)}{\tilde{\Sigma}(M_1)}$$

うくぐ

LECs from matching in mixed regime

Figure: Left: (PRELIMINARY) $\tilde{\Sigma}(m_h)$. Input: F = 90 MeV. $\Sigma a^3 = 0.00103$, $L_6(M_{\rho}) = -0.000074$. Right: $\tilde{\Sigma}(M_{hh})$ as obtained at different ν . $M_{D_4} = 426$ MeV, $M_{D_5} = 379$ MeV, $M_{D_4} = 257$ MeV

$$\frac{\tilde{\Sigma}}{\Sigma} = 1 + \frac{M_{hh}^2}{F^2} \left(\frac{\beta_2}{N_h} + \frac{\log(\mu L)}{8\pi^2 N_h} + 16N_h L_6^{\ r}(\mu) - \frac{N_h}{(4\pi)^2} \log\left(\frac{M_h}{\mu}\right) \right) - \frac{N_h}{F^2} g_1\left(M_h^2, L\right)$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Conclusions and Outlook

We have tested the matching between Quenched RMT and Partially Quenched QCD using a mixed action approach:

- results for ratios of eigenvalues in agreement with RMT predictions
- the scaling with m_{sea} is as predicted by the mixed regime approach
- from chiral fits of the effective condensate we could extract L_6 , Σ (putting F = 90 as input)

Outlook:

- calculate renormalization factor Z_S to extract Σ
- analyze 2-point functions results (in mixed regime sensitive to: F, Σ , L_4 , L_6)