Mixed action computations on fine dynamical lattices
 in collaboration with Nicolas Garron, Pilar Hernandez, Silvia Necco and Carlos Pena

Bernardoni Fabio

IFIC
Universidad de Valencia
14/06/09

QCD Low Energy Constants (LECs)

QCD low energy dynamics is described by ChPT:

- assume chiral symmetries are spontaneously broken $\Rightarrow \pi,(K, \eta)$ are the PseudoGoldstone Bosons (PGBs)
- the form of interactions is constrained by symmetry
- the couplings (LECs) are unconstrained by symmetry: contain the UV information and depend on $N_{l}, m_{b}, m_{c}, \alpha_{s},\left(m_{s}\right)$
- at a given order in $M_{P G B} / \Lambda_{\chi}, p_{P G B} / \Lambda_{\chi}$ the number of LECs is finite. At LO the LECs are the pion decay constant F and the quark condensate Σ in the chiral limit:

$$
\mathcal{L}_{\chi}=\frac{F^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} U \partial_{\mu} U^{\dagger}\right]+\frac{\Sigma}{2} \operatorname{Tr}\left[\mathcal{M} U^{\dagger}+U \mathcal{M}^{\dagger}\right] \quad U=\exp \left(\frac{2 i \xi}{F}\right)
$$

In this work we explore the determination of some LECs by matching the distribution of the lowest eigenvalues of the Dirac operator as predicted by a universality class of Random Matrix Theories (RMT) with mixed action Lattice calculations.

Outline

- ChPT in finite volume
- ϵ-regime
- mixed-regime
- RMT
- validity of the Zero modes Chiral Theory
- scaling with $m_{\text {sea }}$ in mixed regime
- Results
- test of RMT (ratios of eigenvalues)
- determination of L_{6} and Σ
- Conclusions

ChPT in finite volume

No change in the Lagrangian or in LECs, provided $L \Lambda_{\chi} \gg 1$

p-regime power counting

$$
m_{q} \sim M_{\pi}^{2} \sim p^{2} \sim 1 / L^{2} \quad \text { as in } \infty \text { volume }
$$

ϵ-regime power counting

$$
m_{q} \sim M_{\pi}^{2} \sim p^{4} \sim 1 / L^{4}
$$

The dependence on the mass is suppressed \Rightarrow less LECs appear for a given observable at a given order, with respect to p-regime

mixed-regime power counting

$$
m_{l} \sim p^{4} \sim 1 / L^{4} \quad m_{h}^{2} \sim p^{2} \sim 1 / L^{2}
$$

- wrt p-regime: less LECs appear for a given observable at a given order
- wrt ϵ-regime: more LECs appear for a given observable at a given order
- parametrization for pion field [Gasser Leutwyler 87]:

$$
U=U_{0} e^{\frac{2 i \xi}{F}} \quad \int d x^{4} \operatorname{Tr}\left[T^{a} \xi(x)\right]=0 \quad U_{0} \in S U\left(N_{f}\right)
$$

- non trivial dependence on topological sector ν [Leutwyler Smilga 92]

$$
\langle O\rangle_{\nu}=\int_{0}^{2 \pi} d \theta e^{-i \nu \theta}\langle O(\theta)\rangle \quad \theta=\text { vacuum angle }
$$

- at NLO there is factorization of zero U_{0} and non-zero modes $\xi \Rightarrow$ define a zero modes partition functional ($\mu_{i} \equiv \Sigma V m_{i}$):

$$
\mathcal{Z}_{\nu}^{\left(N_{f}\right)}[\{\mu\}]=\int_{U\left(N_{f}\right)} d U_{0}\left(\operatorname{det} U_{0}\right)^{\nu} \exp \left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M} U_{0}+U_{0}^{\dagger} \mathcal{M}\right]\right)
$$

The solution is known in terms of Bessel functions. Other necessary integrals are obtained by deriving with respect to the quark masses. [Brower et al. 1982, Leutwyler \& Smilga 1992, Jackson et al. 1996]

Mixed regime

$$
\mathcal{M}=\left(\begin{array}{cc}
\underbrace{\mathcal{M}_{l}}_{N_{l}} & 0 \\
0 & \underbrace{\mathcal{M}_{h}}_{N_{h}}
\end{array}\right) \quad m_{h} \sim L^{-2} \quad(\epsilon \text {-regime }) m_{l} \sim L^{-4} \text { (p-regime) }
$$

- for pions corresponding to $\operatorname{SU}\left(N_{l}\right) \quad M_{a b}^{2} \sim L^{-4}$
- for other pions $M_{a b}^{2} \sim L^{-2}$ in QCD

$$
M_{a b}^{2}=\frac{\Sigma}{F^{2}}\left(m_{a}+m_{b}\right) \quad M_{\| l}^{2} \sim L^{-4} \quad M_{h l}^{2} \sim L^{-2} \quad M_{h h}^{2} \sim L^{-2}
$$

- $T_{\eta} \equiv \sqrt{\frac{N_{l} N_{h}}{2\left(N_{l}+N_{h}\right)}} \operatorname{diag}\{\underbrace{\frac{1}{N_{l}}, \ldots, \frac{1}{N_{l}}}_{N_{l}}, \underbrace{-\frac{1}{N_{h}}, \ldots,-\frac{1}{N_{h}}}_{N_{h}}\}$ has an N_{l}
dependent mass:

$$
M_{\eta}^{2}=\frac{N_{l} M_{h h}^{2}+N_{h} M_{\|}^{2}}{N_{h}+N_{l}} \quad \mathcal{M}_{h, l}=m_{h, l} \mathbf{1}_{h, l}
$$

- in a PQ theory with zero sea quarks in the ϵ-regime, $N_{I}=0$ and $M_{\eta}^{2} \sim L^{-4}$ (like the η^{\prime} does not decouple in a quenched theory) [F. B. Hernandez 07, Damgaard Fukaya 07, F.B. et at. 08] \equiv

Factorization for mixed regime

Mimicking ϵ-regime, one convenient parametrization is:

$$
\begin{aligned}
U & =\left(\begin{array}{cc}
U_{0} & 0 \\
0 & \mathbf{1}_{h}
\end{array}\right) e^{\frac{2 i \xi}{F}} e^{i \eta T_{\eta}} & & U_{0} \in S U\left(N_{l}\right) \\
\int d x^{4} \operatorname{Tr}\left[T^{a} \xi(x)\right] & =\int d x^{4} \operatorname{Tr}\left[T^{\eta} \xi(x)\right]=0 & & T^{a} \in S U\left(N_{l}\right)
\end{aligned}
$$

- at fixed topology the η mode is coupled to θ and becomes perturbative
- non perturbative and perturbative modes factorize at LO

This formalism can be applied to PQ cases using the Replica Method

Random Matrix Theory (RMT) and QCD in ϵ-regime

Consider the partition functional of a RMT:

$$
\hat{\mathcal{Z}}_{\nu}\left[\left\{\hat{m}_{i}\right\}\right]=\int d W \prod_{l=1}^{N_{l}} \operatorname{det}\left(i \hat{D}+\hat{m}_{l}\right) \exp \left(-\frac{N}{2} \operatorname{Tr} V\left(\hat{D}^{2}\right)\right) \quad \hat{D}=\left(\begin{array}{cc}
0 & W^{\dagger} \\
W & 0
\end{array}\right)
$$

- the W matrices have rectangular size $N \times(N+\nu)$
- $V\left(\hat{D}^{2}\right)$ is an arbitrary potential such that the spectral density $\hat{\rho}$ satisfies: $\lim _{\hat{\lambda} \rightarrow 0} \hat{\rho}(\hat{\lambda}) \neq 0$ where $\hat{\lambda}$ are the eigenvalues of \hat{D}
It has been shown that in the limit $N \rightarrow \infty$, if $\hat{\mu}_{I} \equiv 2 N \hat{m}_{I} \hat{\rho}(0)$:

$$
\hat{\mathcal{Z}}_{\nu}[\{\hat{m}\}]_{\hat{\mu}_{i}=m_{i} \Sigma V}=\mathcal{Z}_{\nu}^{\left(N_{1}\right)}[\{\mu\}] \equiv \int_{U\left(N_{l}\right)} d U_{0} \operatorname{det}\left(U_{0}\right)^{\nu} \exp \left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M}_{l} U_{0}+U_{0}^{\dagger} \mathcal{M}_{l}^{\dagger}\right]\right)
$$

[Shuryak Verbaarschot 92]
RMT $=$ zero modes partition functional in ϵ-regime at $\mathrm{LO} \equiv$ ZMChT

Random Matrix Theory (RMT) and QCD in ϵ-regime

Consider the partition functional of a RMT:

$$
\hat{\mathcal{Z}}_{\nu}\left[\left\{\hat{m}_{i}\right\}\right]=\int d W \prod_{l=1}^{N_{l}} \operatorname{det}\left(i \hat{D}+\hat{m}_{l}\right) \exp \left(-\frac{N}{2} \operatorname{Tr} V\left(\hat{D}^{2}\right)\right) \quad \hat{D}=\left(\begin{array}{cc}
0 & W^{\dagger} \\
W & 0
\end{array}\right)
$$

- the W matrices have rectangular size $N \times(N+\nu)$
- $V\left(\hat{D}^{2}\right)$ is an arbitrary potential such that the spectral density $\hat{\rho}$ satisfies: $\lim _{\hat{\lambda} \rightarrow 0} \hat{\rho}(\hat{\lambda}) \neq 0$ where $\hat{\lambda}$ are the eigenvalues of \hat{D}
The replica limit $N_{v} \rightarrow 0$ of this integral is:
$\hat{\mathcal{Z}}_{\nu}[\{\hat{m}\}]_{\hat{\mu}_{i}=m_{i} \Sigma V}=\mathcal{Z}_{\nu}^{\left(N_{l}\right)}[\{\mu\}] \equiv \int_{\mathcal{G} \mid\left(N_{\nu} \mid N_{v}+N_{s_{l}}\right)} d U_{0} \operatorname{det}\left(U_{0}\right)^{\nu} \exp \left(\frac{\Sigma V}{2} S \operatorname{Tr}\left[\mathcal{M}_{l} U_{0}+U_{0}^{\dagger} \mathcal{M}_{l}^{\dagger}\right]\right)$
[Damgaard et al 98]
All the conclusions that follow can be extended to the Quenched and PQ theories using this modification.

Matching of QCD in ϵ-regime and ZMChT

In the ϵ-regime at fixed ν the nonzero momentum modes can be integrated out: $M_{\| /}<\frac{2 \pi}{L}$

$$
\begin{aligned}
& \mathcal{Z}_{\nu}^{C h P T(\epsilon)}=\int_{U\left(N_{l}\right)} d U_{0} d \xi \operatorname{det}\left(U_{0}\right)^{\nu} \exp \left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M}_{l} U_{0}+U_{0}^{\dagger} \mathcal{M}_{l}^{\dagger}\right]\right) e^{-\int d^{4} \times \operatorname{Tr}\left[\partial_{\mu} \xi \partial_{\mu} \xi\right]} \\
& \quad \propto \int_{U\left(N_{l}\right)} d U_{0} \operatorname{det}\left(U_{0}\right)^{\nu} \exp \left(\frac{\Sigma V}{2} \operatorname{Tr}\left[\mathcal{M}_{l} U_{0}+U_{0}^{\dagger} \mathcal{M}_{l}^{\dagger}\right]\right) \equiv \mathcal{Z}_{\nu}^{Z M C h T}[\{\mu\}]
\end{aligned}
$$

Matching of QCD in ϵ-regime and ZMChT

This matching can be extended to:

- mixed regime: integrating out the zero modes of heavier p-regime PGBs
- NLO: zero and nonzero modes are coupled
$\mathcal{L}_{\text {ChPT }(m)}^{N L O}=\ldots+\frac{\Sigma}{F^{2}} \operatorname{Tr}\left[\mathcal{M}_{1}\left(\xi^{2} U_{0}+U_{0}^{\dagger} \xi^{2}\right)\right]-16 \frac{\Sigma L_{6}}{F^{4}} \operatorname{Tr}\left[\mathcal{M}_{h}\right] \operatorname{Tr}\left[\mathcal{M}_{1}\left(U_{0}+U_{0}^{\dagger}\right)\right]+\ldots$.
At NLO the integration of the "heavy modes" induce a renormalization of the $\Sigma: \mathcal{Z}_{\nu}^{Z M C h T}[\{\mu\}]_{N L O} \propto \mathcal{Z}_{\nu}^{Z M C h T}[\{\tilde{\mu}\}]$

Predictions of RMT

There are analytical calculations of:

- the microscopic spectral density $\rho^{\nu}(\hat{\zeta} ;\{\mu\})$, where $\hat{\zeta}_{i} \equiv 2 N \hat{\lambda}_{i} \hat{\rho}(0)$ [Shuryak et al., Damgaard]:
- ex. the quenched result: $\rho^{\nu}(\hat{\zeta} ; 0)=\frac{\hat{\zeta}}{2}\left[J_{\nu}(\hat{\zeta})^{2}-J_{\nu+1}(\hat{\zeta}) J_{\nu-1}(\hat{\zeta})\right]$
- the joint probability distributions for N eigenvalues $\rho^{\nu}\left(\hat{\zeta}_{1}, \ldots, \hat{\zeta}_{N} ;\{\mu\}\right)$
- probability distribution of the k-th smallest eigenvalue $\hat{\zeta}_{k}, p_{k}^{\nu}(\hat{\zeta} ;\{\mu\})$ [Nishigaki et al.]
- flavor-topology duality (strictly valid at $\left.m_{i}=0\right): p_{k}^{\nu}(\hat{\zeta} ;\{0\})$ depends on N_{f} and ν only through $N_{f}+|\nu|$.
- In the cases where the quantities have been computed in ChPT in the ϵ-regime (eg the microscopic spectral density) the results agree if

$$
\hat{\zeta}_{i}=\tilde{\Sigma} V \lambda_{i} \quad \hat{\mu}_{i}=\tilde{\Sigma} V m_{i}
$$

where λ_{i} are the eigenvalues of the Dirac operator. Matching RMT predictions and lattice results allows to extract $\tilde{\Sigma}$

Matching in the Quenched theory

Check of matching RMT-QCD first performed in the Quenched theory
[Edwards et al. 99,... Giusti et al. 03]

- diamonds: Lattice data
- horizontal bars: RMT

> [Giusti et al. 03]

Since:

$$
\left\langle\hat{\zeta}_{k}\right\rangle_{\mathrm{RMT}}^{\nu}=\tilde{\Sigma} V\left\langle\lambda_{k}\right\rangle_{\mathrm{QCD}}^{\nu}
$$

- ratios of k -th over l-th eigenvalues $\left\langle\lambda_{k}\right\rangle^{\nu} /\left\langle\lambda_{l}\right\rangle^{\nu^{\prime}}$ are parameter free predictions
- the Σ (and other LECs) extracted in this framework would be the one of the Quenched theory, $\Sigma_{N_{f}=0}$
In the dynamical case check performed for $\rho(\lambda)$ [Fukaya_et al 07$]$

Simulation

Mixed action approach:

- sea: $O(a)$ improved Wilson quarks (CLS configurations:
$N_{h}=2, N_{l}=0$) [Del Debbio et al. 2007]
- valence: overlap

$\beta=5.3, c_{\text {sw }}=1.90952, V=48 \times 24^{3}, a=0.0784(10) \mathrm{fm}$				
label	κ	$a M_{\text {ss }}$	$N_{\text {cfg }}$	
D_{4}	0.13620	$0.1695(14)$	86	
D_{5}	0.13625	$0.1499(15)$	169	
D_{6}	0.13635	$0.1183(37)$	246	$\left(\mathrm{D}_{6 \mathrm{a}}: 159\right)$
			$\left(\mathrm{D}_{6 \mathrm{~b}}: 87\right)$	

Table: Simulation parameters.
We match with the Quenched RMT prediction: but this time $\tilde{\Sigma}=\tilde{\Sigma}\left(\left.\Sigma\right|_{N_{f}=2},\left.L_{6}\right|_{N_{f}=2}\right)$

- overlap allow a determination of ν through the index theorem:

$$
\nu=n_{R}-n_{L}
$$

$n_{R, L}$ is the number of right, left handed zero modes

D5

Figure: Distribution of topological charge for D_{5}

Locality Check

$$
\mathcal{D}^{(O)}=\frac{1}{a}\left(1-A\left(A^{\dagger} A\right)^{-1 / 2}\right), \quad A=1+s-a \mathcal{D}^{(W)}
$$

$$
\begin{array}{cl}
\zeta(x) \equiv \operatorname{Sign}(\mathrm{A}) \eta(x) \quad \eta_{\alpha}(x)=\delta_{x y} \delta_{\alpha 1} & \bullet\|\ldots\|_{1} \text { is the "taxi driver" distance } \\
f(r) \equiv \max \left\{\|\zeta(x)\|^{2} \mid\|x-y\|_{1}=r\right\} & \text { •tune } s \text { to maximize } B \\
g(r) \equiv A e^{-B r} & \text { •OK in quenched case [Hernandez et al.] }
\end{array}
$$

- precision of $\operatorname{Sign}(\mathrm{A}) \sim 10^{-8} \Rightarrow\|\zeta(x)\|^{2}$ calculated reliably until $\|\zeta(x)\|^{2}>10^{-16} \Rightarrow$ fitrange: 14-28

- locality works better for $s=0.4$
- B is generally smaller than its quenched analog

Numerical Results for eigenvalues ratios 1

D5

D6

Figure: ratios of k-th eigenvalues at different topological sectors for $M_{s s}=377$ MeV (left) and $M_{s s}=257$ (right). The black line indicates the qRMT prediction

Rather good agreement with Quenched RMT predictions

Numerical Results for eigenvalues ratios 2

Figure: ratios of Dirac eigenvalues for $\nu=1$ (left) and $\nu=2$ (right). k / l is a shorthand for $\left\langle\lambda_{k}\right\rangle /\left\langle\lambda_{l}\right\rangle$ The horizontal bar indicates the qRMT prediction

Rather good agreement with Quenched RMT predictions except for ratios of eigenvalues at fixed ν involving the lowest eigenvalue.

LECs from matching in mixed regime

Figure: ratios of k-th eigenvalues at $M_{1}=257 \mathrm{MeV} M_{2}=377 \mathrm{MeV}$

- Ratios of k -th eigenvalues at different masses independent from ν and k :

$$
\left\langle\zeta_{k}\right\rangle_{\mathrm{qRMT}}^{\nu}=\tilde{\Sigma}\left(M_{h h}\right) V\left\langle\lambda_{k}\right\rangle_{\mathrm{QCD}}^{\nu}\left(M_{h h}\right) \Rightarrow R_{\Sigma} \equiv \frac{\left\langle\lambda_{k}\right\rangle^{\nu}\left(M_{1}\right)}{\left\langle\lambda_{k}\right\rangle^{\nu}\left(M_{2}\right)}=\frac{\tilde{\Sigma}\left(M_{2}\right)}{\tilde{\Sigma}\left(M_{1}\right)}
$$

LECs from matching in mixed regime

Figure: Left: (PRELIMINARY) $\tilde{\Sigma}\left(m_{h}\right)$. Input: $F=90 \mathrm{MeV} . \Sigma a^{3}=0.00103$, $L_{6}\left(M_{\rho}\right)=-0.000074$. Right: $\tilde{\Sigma}\left(M_{h h}\right)$ as obtained at different $\nu . M_{D_{4}}=426$ $\mathrm{MeV}, M_{D_{5}}=379 \mathrm{MeV}, M_{D_{4}}=257 \mathrm{MeV}$

$$
\frac{\tilde{\Sigma}}{\Sigma}=1+\frac{M_{h h}^{2}}{F^{2}}\left(\frac{\beta_{2}}{N_{h}}+\frac{\log (\mu L)}{8 \pi^{2} N_{h}}+16 N_{h} L_{6}{ }^{r}(\mu)-\frac{N_{h}}{(4 \pi)^{2}} \log \left(\frac{M_{h}}{\mu}\right)\right)-\frac{N_{h}}{F^{2}} g_{1}\left(M_{h}^{2}, L\right)
$$

Conclusions and Outlook

We have tested the matching between Quenched RMT and Partially Quenched QCD using a mixed action approach:

- results for ratios of eigenvalues in agreement with RMT predictions
- the scaling with $m_{\text {sea }}$ is as predicted by the mixed regime approach
- from chiral fits of the effective condensate we could extract L_{6}, Σ (putting $F=90$ as input)

Outlook:

- calculate renormalization factor Z_{S} to extract Σ
- analyze 2-point functions results (in mixed regime sensitive to: F, Σ, $\left.L_{4}, L_{6}\right)$

