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We calculate the low-energy excitations of QCD in finite volume in
chiral perturbation theory (ChPT)

Consider 2 light quark flavours, m,, = mg = m.

Special environment: §-regime
o Lt > L§
e The Compton wavelength of the pion M ! is much larger than the box
size Lg
ML, <« 1.

M corresponds to the leading term for the pion mass in infinite volume

M? =2mB.



The low-energy excitations of this system are described by a O(4)
quantum mechanlcal rotator [Fisher, Privman '83] [Brezin, Zinn-Justin '83] [Leutwyler '87]

. .

where j is the “angular momentum” in the internal O(4) space.
© = F2L3(1 + ...) receives corrections due to ChPT (chiral limit)
The symmetry breaking terms give corrections to energy E.

Two dimensionless expansion parameters (62 ~ r4)
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e The formula for the energy gap contains low-energy constants (LECs)
from ChPT F, B, Ay, As.

e The energy gap will never be measured in experiments, but it can be
measured in numerical simulations (lattice).



The formula for the energy gap contains low-energy constants (LECs)
from ChPT F, B, Ay, As.

The energy gap will never be measured in experiments, but it can be
measured in numerical simulations (lattice).

Calculate finite volume effects analytically in ChPT.

Determine the LECs through lattice simulations in the d-regime.




@ Chiral perturbation theory in the d-regime
@® Energy gap Er, up to NNL order

® Domain in L, and M for the rotator
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Chiral perturbation theory

The effective Lagrangian

e QCD at low-energies can be described by an effective field theory
(ChPT).
Log=LD 4@ .
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Chiral perturbation theory

The effective Lagrangian

e QCD at low-energies can be described by an effective field theory
(ChPT).
Log=LD 4@ .

e We use the O(4) non-linear o-model (since SU(2) x SU(2) ~ O(4)).

o The effective Lagrangian is expressed in the fields S, where g(a:)Q =1

F? 5 q
£®) = 2-0,5(2)9,5 () — M*F*Sy(x)

£ = 1, (0,80)9,5))" ~ 2 (8,5(2)0,5())

+ symmetry breaking terms
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Chiral perturbation theory

The effective Lagrangian

e QCD at low-energies can be described by an effective field theory
(ChPT).
Log=LD 4@ .

e We use the O(4) non-linear o-model (since SU(2) x SU(2) ~ O(4)).

o The effective Lagrangian is expressed in the fields S, where g(a:)Q =1
(2) F? & g 2 172
LY = 7@5(1:)8#5(:6) — M*F*Sy(x),
- L N2 . L \2
LW =y, (6HS(Q:)8HS(95)> A <8MS(x)8VS(x))
+ symmetry breaking terms
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Chiral perturbation theory

Separate slow and fast modes

In §-regime (MLs < 1, Ly > L), collective behaviour sets in

Global mode performs a slow rotation in internal space
(non-perturbative) = slow mode

Identify the fluctuations around the global mode as the fast modes
= fast modes can be integrated out in perturbation theory

Separate fast modes 7(x) from slow modes é(¢) in the partition
function = will not discuss this technical issue here
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Chiral perturbation theory

Integrate out the fast modes

Expand the effective action in terms of fast modes

Integrate out the fast modes in the partition function

Use dimensional regularisation

Similar work by Niedermayer & Weiermann (chiral limit, NNL order)
but in lattice regularisation
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Chiral perturbation theory

Intermediate result after having integrated out the fast modes

After having integrated out the fast modes, we end up with a 1-d problem
)
Aegr = /dt 5@5@)@5@) —neo(t), et)? =1,

where
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After having integrated out the fast modes, we end up with a 1-d problem
)
Aegr = /dt 5@5@)@5@) —neo(t), et)? =1,

where

da

e =F?3
s F2[2

1+

[Hasenfratz, Niedermayer '93]
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Chiral perturbation theory

Intermediate result after having integrated out the fast modes

After having integrated out the fast modes, we end up with a 1-d problem

Aet = /dt %@5@)@5@) —neo(t), et)? =1,

where
©=F2L31+ 02 i :
F2L2 [Hasenfratz, Niedermayer '93]
1 1 A 9 A 9
+ F4L4 d4 -+ d4 1 log( 1L5) + log( QLS) y [Hasenfratz '09]
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M.W.]

213ps2
0= FLM[HT%J,
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@® Energy gap Er, up to NNL order
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The O(4) rotator

e Interpret the previous system as a quantum mechanical rotator in an
external “magnetic” field

H= é<lj - (@n)eo> ;

where L is the “angular momentum” operator in the internal space

e For On small, we calculate the corrections to the unperturbed
spectrum
Indeed: On = FALSM?(1+...)=r?(1+...)
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The O(4) rotator

The energy gap up to O((©n)*)

e The energy gap: difference of the first excited state to the ground
state

e Energy levels of the 1st excited state split up into a triplet and a
singlet
e The energy gap up to O((0n)%) is

2 4
ENRCY IR

E =
20 15 120 152
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Calculate the energy gap up to NNLO

Energy gap at LO

3
Bl =-——{1
Ls 2F2L§{ -
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Calculate the energy gap up to NNLO

Energy gap up to NLO

3 { 2G*  FSL12MM4

B =——2A{1
L= o\ PR T 15
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Calculate the energy gap up to NNLO

Energy gap up to NNLO

Yk 8rl12as4
B, 3{ 2G*  FSL12M

=
oFi\ TPzt 15
AG)?2 =Dy, GrFSL12M* 193 [ FSLI2M4\°
FALA 3 F2I2 120 15

1
Dy=dy+d) <4 log(A1 L)% + log(A2L3)2>
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Outline

® Domain in L, and M for the rotator
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What are the constraints on L, and M?

How large (small) should Ls (M) be?

e Requiring 1/F?L? small puts a lower limit on the spatial extent of the
box
Lg 2 25fm.
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What are the constraints on L, and M?

How large (small) should Ls (M) be?

e Requiring 1/F?L? small puts a lower limit on the spatial extent of the
box
Lg 2 25fm.

e This gives an upper bound on the pion mass M

M < 70MeV .
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What are the constraints on L, and M?

How large may M be?

e We assumed that the two expansion parameters 62 and r* are of the
same order

M. Weingart (Bern) QCD Rotator up to NNL Lattice 2010 17 / 19



What are the constraints on L, and M?

How large may M be?

e We assumed that the two expansion parameters 62 and r* are of the
same order

e = gives even a smaller upper bound on M for a given box size L,

M. Weingart (Bern) QCD Rotator up to NNL Lattice 2010 17 / 19



What are the constraints on L, and M?

How large may M be?

e We assumed that the two expansion parameters 62 and r* are of the

same order

e = gives even a smaller upper bound on M for a given box size L,

Ly M ML,
2.0 137 1.40
25 63 0.80
3.0 33 050
35 19 0.34
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How large are the corrections to Ey, ?

e Estimate for the size of the corrections (NL, NNL) for E,

3

Ep, =——
Le = oF2p3

[1 4+ AnL + AnnL]

we use A; = 120 MeV and As = 1200 MeV and we assume the upper
limit of M at a given box size L.
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How large are the corrections to Ey, ?

e Estimate for the size of the corrections (NL, NNL) for E,

3

Ep, =——
Ls = op2r3

1+ Anr, + Anni]

we use A; = 120 MeV and As = 1200 MeV and we assume the upper
limit of M at a given box size L.

e The corrections Ay, respectively Axny, for different values of L
Ls Anp AnnL

20 -0.50 0.56
25 -032 0.24
3.0 -0.22 0.12
35 -0.16 0.07
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Conclusions

e The final result for the energy gap looks quite simple, although the
underlying (ChPT) theory is not

e To observe the rotator spectrum:

e The spatial volume should be quite large Ly 2 2.5fm
o FBL2M* should be small = M < 63 MeV
e When we increase Ly, M must become smaller

e Simulations with quark masses below the physical quark masses are
needed
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