Poisson Statistics in the High Temperature QCD Dirac Spectrum

Tamás G. Kovács with Ferenc Pittler

Department of Physics University of Pécs

June 17, 2010

$T < T_c$ ε -regime

Dirac eigenvalues obey random matrix statistics

- Low energy effective σ-model calculation
- Lattice (numerical verification)

$T > T_c$

- No analytic information
- Dirac operator is just a fluctuating "random matrix"

Dirac spectrum above T_c

$$\begin{cases} \{\gamma_5, D\} = 0 \\ D^{\dagger} = -D \end{cases} \Rightarrow D = \begin{pmatrix} 0 & iC \\ iC^{\dagger} & 0 \end{pmatrix} \xrightarrow{\xi}_{Re\lambda}$$

• \Rightarrow Spectrum imaginary, symmetric w.r.t. real axis.

• Transition around $T_c \approx 200 \text{MeV}$

~ 1

Random matrix statistics

Statistically independent eigenvalues (generalized Poisson)

Tamás G. Kovács Poisson statistics in the high-T QCD Dirac spectrum 4/13

Two extreme possibilities — lattice results so far

Random matrix statistics

- Edge RMT (Farchioni et al. PRD 2000; Damgaard et al. NPB 2000)
- √ Bulk RMT (Pullirsch, Rabitsch, Wettig, Markum, PLB 1998)
- ? Typical fluctuations can mix eigenmodes. (Gavai, Gupta, Lacaze, PRD 2008)
- Eigenmodes delocalized.

Statistically independent eigenvalues (generalized Poisson)

Two extreme possibilities — lattice results so far

Random matrix statistics

- Edge RMT (Farchioni et al. PRD 2000; Damgaard et al. NPB 2000)
- √ Bulk RMT (Pullirsch, Rabitsch, Wettig, Markum, PLB 1998)
- ? Typical fluctuations can mix eigenmodes. (Gavai, Gupta, Lacaze, PRD 2008)
- Eigenmodes delocalized.

Statistically independent eigenvalues (generalized Poisson)

- Spectral density contains all statistical information.
- Typical fluctuations cannot mix eigenmodes.
- / Eigenmodes localized. (Garcia-Garcia, Osborn, PRD 2007)

(TGK, PRL 2010; TGK and Pittler, arXiv:1006.1205)

- SU(2) quenched
- Physical (P > 0) Polyakov sector selected "by hand"
- $T = 2.6T_c$
- $N_t = 4,6$ $N_s = 12-48$
- Dirac operator: overlap, staggered.
- Overlap and staggered give qualitatively similar results.

Average spatial extension of eigenmodes staggered, $N_t = 4$

3-vol. dependence of average lowest two eigenvalues $v_{t} = 4$

Generalized Poisson with power-law spectral density $\Rightarrow \langle \lambda_1 \rangle = (CV\mu)^{-\mu} \cdot \Gamma(1+\mu)$ Fit C, μ $\langle \lambda_2 \rangle = (CV\mu)^{-\mu} \cdot \Gamma(2+\mu)$ No free parameter!

Tamás G. Kovács Poisson statistics in the high-T QCD Dirac spectrum

Distribution of two smallest eigenvalues overlap, $N_t = 4$, $N_s = 16$

No free parameter!

 $p_1(\lambda)$ and $p_2(\lambda)$ contain the already fitted parameters μ, C .

Cumulative volume fill fraction

staggered, $N_t = 4$, $N_s = 24$

Unfolded level spacing distribution

staggered, $N_t = 4$, $N_s = 24$

Scaling with spatial volume staggered, $N_t = 4$

Continuum limit

staggered, $N_t = 4$ and $N_t = 6$; same temperature and physical volume

- At $T > T_c$ lowest Dirac eigenvalues uncorrelated (Poisson)
- These modes are localized (scale $\approx 1/T_c$)
- Number of Poisson modes scales with physical volume.
 - Maybe localized on physical gauge field objects
 - Definitely not instantons!
- Fermion b.c. essential: Poisson modes absent for periodic b.c.
- Upper part of the spectrum: transition to bulk RMT statistics and delocalized modes