Phenomenology from the Lattice

Chris Sachrajda

School of Physics and Astronomy
University of Southampton
Southampton SO17 1BJ
UK

The XXVIII International Symposium on Lattice Field Theory
Villasimius, Sardinia, June 14th - 19th 2010

- Clearly, with the title I have been given I have to be very selective.

1001 apologies!

- At this conference we have a number of plenary talks and many parallel sessions devoted to lattice computations of physical quantities of phenomenological importance in particle physics. C.Alexandrou, J.Heitger, G.Herdoiza, C.Hölbling, J.Laiho,
- I will not try to make a compilation of the latest lattice results.
- I will not discuss the different formulations of lattice QCD or effective theories of heavy quarks.
- I will give examples of

1 What Next for "mature" quantities which have been calculated with "good" precision?
2 Continued attempts to extend the range of physical quantities which can be calculated.
3 Important phenomenological quantities which I don't know how to start evaluating.

- We understand how to calculate the spectrum, quark masses, and matrix elements of the form $\langle 0| O(0)|h\rangle$ and $\left\langle h_{2}\right| O(0)\left|h_{1}\right\rangle$. These continue to be calculated with ever improving precision.

Contents

11 Introduction.
2 Remarks about $V_{u s}$ determination.
[3 $\varepsilon_{K},\left|V_{c b}\right|$ and $\sin 2 \beta$-Consequences of improved determinations of \hat{B}_{K}.
(4) $K \rightarrow \pi \pi$ Decays.
5. The $\eta-\eta^{\prime}$ system.
6. Long-Distance Contributions in Kaon Physics.

17 Non-leptonic B-decays.
8 Conclusions

Contents

1 Introduction．
2 Remarks about $V_{u s}$ determination．
$3 \varepsilon_{K},\left|V_{c b}\right|$ and $\sin 2 \beta$－Consequences of improved determinations of \hat{B}_{K} ．
4）$K \rightarrow \pi \pi$ Decays．
1 Non－leptonic B－decays．
${ }_{8}$ Conclusions
5 The $\eta-\eta^{\prime}$ system．
6．Long－Distance Contributions in Kaon Physics．
i Rare Kaon Decays．
ii $m_{K_{S}}-m_{K_{L}}$

Isidori，Martinelli Turchetti，hep－lat／0506026
N．Christ，this conference

- The precision of lattice calculations is now reaching the point where we need better interactions with the $N^{n} L O$ QCD perturbation theory community.
- The traditional way of dividing responsibilities is:

- The two factors have to be calculated in the same scheme.
- Can we meet half way?
bare

lattice
operators
:---:
renormalized
in $\overline{\mathrm{MS}}$ scheme

- What is the best scheme for ? (RI-SMOM, Schrödinger Functional, ...)?
- Recent examples of such collaborations following J.Gracey ...:
- two-loop matching factor for m_{q} between the RI-SMOM schemes and $\overline{\mathrm{MS}}$. M.Gorbahn and S.Jager, arXiv:1004:3997, L.Almeida and C.Sturm, arXiv:1004:4613
- HPQCD + Karlsruhe Group in determination of quark masses.

Flavianet Lattice Averaging Group
(preliminary)

- Currently the main uncertainty on $f^{+}(0)$ is due to the chiral extrapolation.

RBC-UKQCD, arXiv:1004:0886

- Lattice calculations of f_{K} / f_{π} combined with the experimental widths $\Rightarrow V_{u s} / V_{u d}$.
- Following the suggestion of Becirevic et al., precise lattice calculations of the $K_{\ell 3}$ form factor $f^{+}(0)$ are possible $\Rightarrow V_{u s}$.
hep-ph/0403217
- Results are in remarkable agreement with SM.

Results in the Standard Model

- We have the two precise results:

$$
\left|\frac{V_{u s} f_{K}}{V_{u d} f_{\pi}}\right|=0.27599(59) \quad \text { and } \quad\left|V_{u s} f_{+}(0)\right|=0.21661(47)
$$

- We can view these as two equation for the four unknowns $f_{K} / f_{\pi}, f_{+}(0), V_{u s}$ and $V_{u d}$.
- Within the Standard Model we also have the unitarity constraint:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+V_{u b \mid}^{\mid 2}=1
$$

- Thus we now have 3 equations for four unknowns.
- There has been considerable work recently in updating the determination of $V_{u d}$ based on 20 different superallowed transitions.

Hardy and Towner, arXiV:0812.1202

$$
\left|V_{u d}\right|=0.97425(22) .
$$

- If we accept this value then we are able to determine the remaining 3 unknowns:

$$
\left|V_{u s}\right|=0.22544(95), \quad f_{+}(0)=0.9608(46), \quad \frac{f_{K}}{f_{\pi}}=1.1927(59)
$$

$\mathbf{S U}(2) \mathrm{ChPT}$ and $f_{0}\left(q_{\text {max }}^{2}\right) ; \quad q_{\text {max }}^{2}=\left(m_{K}-m_{\pi}\right)^{2}$

m_{π}	$f_{0}\left(q_{\max }^{2}\right)$
670 MeV	$1.00029(6)$
555 MeV	$1.00192(34)$
415 MeV	$1.00887(89)$
330 MeV	$1.02143(132)$
RBC-UKQCD $\left(N_{f}=2+1\right)$, arXiv:0710.5136	

m_{π}	$f_{0}\left(q_{\max }^{2}\right)$
575 MeV	$1.00016(6)$
470 MeV	$1.00272(34)$
435 MeV	$1.00416(43)$
375 MeV	$1.00961(123)$
300 MeV	$1.01923(121)$
260 MeV	$1.03097(224)$
ETM $\left(N_{f}=2\right)$, arXiv:0906.4728	

- In the $\mathrm{SU}(2)$ chiral limit, $m_{u d}=0$, we have the Callan-Treiman Relation

$$
f_{0}\left(q_{\max }^{2}\right)=\frac{f_{K}}{f_{\pi}} \simeq 1.26
$$

- We have investigated whether the difference of the numbers in the table and 1.26 can be understood using SU(2) ChPT.
- The one-loop chiral logarithms have a large coefficient and are of the correct size to account for the difference. However they have the wrong sign!
- There are linear and quadratic terms in m_{π}.

They cannot be calculated in $\mathrm{SU}(2) \mathrm{ChPT}$, but estimating the LECs by converting results from $\mathrm{SU}(3) \mathrm{ChPT}$ suggests that these terms have the correct sign and magnitude to account for the difference.

- The same features hold for $B \rightarrow \pi$ and $D \rightarrow \pi$ semileptonic decays.

SU(2) ChPT at $q^{2}=0$ - Hard-Pion Chiral Perturbation Theory

- We also argue that information can be obtained at values of q^{2} where the external pion is not soft, such as at the reference point $q^{2}=0$. J.Flynn, CTS, arXiV:0809.1229.

$$
\begin{aligned}
f^{0}(0)=f^{+}(0) & =F_{+}\left(1-\frac{3}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+c_{+} m_{\pi}^{2}\right) \\
f^{-}(0) & =F_{-}\left(1-\frac{3}{4} \frac{m_{\pi}^{2}}{16 \pi^{2} f^{2}} \log \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+c_{-} m_{\pi}^{2}\right)
\end{aligned}
$$

- It is possible to calculate the chiral logarithm because this comes from a soft internal loop.
- The approach can be applied at other values of q^{2}.
- This idea has recently been extended to $K \rightarrow \pi \pi$ decays,
J.Bijnens and A Celis, arXiV:0906.0302 and to $B \rightarrow \pi$ and $D \rightarrow \pi$ semileptonic decays. J.Bijnens and I Jemos, arXiV:1006.1197
- Since the chiral extrapolation is a major source of systematic uncertainty for the lattice determination of $V_{u s}$ from $K_{\ell 3}$ decays, it is important to have all the possible theoretical information to guide us.

It would be useful to know the result at NNLO.

- It would be reassuring to confirm that it is possible to develop an effective theory in which hard and soft pions are separated.

3．$\varepsilon_{K},\left|V_{c b}\right|$ and $\sin 2 \beta$

Within the standard model the indirect CP－Violation parameter

$$
\varepsilon_{K}=\frac{2 \eta_{+-}+\eta_{00}}{3}, \quad \eta_{i j}=\frac{\mathscr{A}\left(K_{L} \rightarrow \pi^{i} \pi^{j}\right)}{\mathscr{A}\left(K_{S} \rightarrow \pi^{i} \pi^{j}\right)},
$$

can be written in the form

$$
\varepsilon_{K}=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2}\left|V_{u s}\right|^{2}\left(\frac{1}{2}\left|V_{c b}\right|^{2} R_{t}^{2} \sin 2 \beta \eta_{t t} S_{0}\left(x_{t}\right)+R_{t} \sin \beta\left(\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)\right)
$$

with

$$
C_{\varepsilon}=\frac{G_{F}^{2} f_{K^{2}}^{2} M_{K^{0}} M_{W}^{2}}{6 \sqrt{2} \pi^{2}\left(\Delta M_{K}\right)} \quad x_{i}=\bar{m}_{i}^{2}\left(\bar{m}_{i}\right), \quad R_{t} \simeq \frac{1}{\lambda} \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|} .
$$

Two recent developments move the SM prediction downwards：
1 Precise lattice values of \hat{B}_{K} are＂low＂：

$$
\begin{array}{ll}
\hat{B}_{K}=0.720(13)(37) & \text { D.J.Antonio et al., RBC-UKQCD, hep-ph/0702042 } \\
\hat{B}_{K}=0.724(8)(28) & \text { C.Aubin, J.Laiho and R.Van de Water, arXiv:0905.3947 }
\end{array}
$$

$$
\varepsilon_{K}=\kappa_{\varepsilon} C_{\varepsilon} \hat{B}_{K}\left|V_{c b}\right|^{2}\left|V_{u s}\right|^{2}\left(\frac{1}{2}\left|V_{c b}\right|^{2} R_{t}^{2} \sin 2 \beta \eta_{t t} S_{0}\left(x_{t}\right)+R_{t} \sin \beta\left(\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)\right)
$$

Write $\quad \varepsilon_{K}=e^{i \phi_{\varepsilon}} \sin \left(\phi_{\varepsilon}\right)\left(\frac{\operatorname{Im} M_{12}^{K}}{\Delta M_{K}}+\xi\right), \quad$ where

$$
\xi=\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \quad \text { and } \quad \phi_{\varepsilon}=\arctan \left(2 \Delta M_{K} / \Delta \Gamma\right)=(43.51 \pm 0.05)^{\circ}
$$

$\kappa_{\varepsilon}=0.92 \pm 0.02$ is a correction factor taking into account the difference of ϕ_{ε} from 45° as well as the presence of the ξ term.

- Using the above values of \hat{B}_{K} and κ_{ε}, Buras and Guadagnoli find: arXiv:0901.2056

$$
\left|\varepsilon_{K}\right|^{\mathrm{SM}}=(1.78 \pm 0.25) 10^{-3} \quad \text { to be compared to } \quad\left|\varepsilon_{K}\right|^{\exp }=(2.229 \pm 0.012) 10^{-3}
$$

2σ "tension"

- The top-quark contribution to ε_{K} is the dominant one so that approximately:

$$
\left|\varepsilon_{K}\right| \propto \kappa_{\varepsilon} f_{K}^{2} \hat{B}_{K}\left|V_{c b}\right|^{4} \xi_{s}^{2} \sin (2 \beta)
$$

so that the prediction is very sensitive to $\left|V_{c b}\right| \stackrel{?}{=}(41.2 \pm 1.1) 10^{-3}$ and

$$
\xi_{s}=\frac{f_{B_{s}} \sqrt{\hat{B}_{s}}}{f_{B_{d}} \sqrt{\hat{B}_{d}}} \stackrel{?}{=} 1.21 \pm 0.06
$$

- Lunghi and Soni have been proposing to rewrite the expression for $\left|\varepsilon_{K}\right|$ to avoid using semileptonic decays $\left(V_{c b}^{4}\right)$ in which case the tasks for the lattice continue to be to refine the calculations of f_{B} and $B_{s}-\bar{B}_{s}$ mixing. (Tension persists.)
arXiv:0903.5059, arXiv:0912.002
- Of course we would like to evaluate all the $K \rightarrow \pi \pi$ matrix elements in lattice simulations and reconstruct A_{0} and A_{2} and understand the $\Delta I=1 / 2$ rule and the value of $\varepsilon^{\prime} / \varepsilon$ (see below).
- In the meantime however, we know $\operatorname{Re} A_{0}$ and $\operatorname{Re} A_{2}$ from experiment.
- The experimental value of $\varepsilon^{\prime} / \varepsilon$ gives us one relation between $\operatorname{Im} A_{0}$ and $\operatorname{Im} A_{2}$, thus if we evaluate $\operatorname{Im} A_{2}$ then within the standard model we know $\operatorname{Im} A_{0}$ to some precision.

Thanks to Andrzej Buras for stressing this to me.

- I stress again that ultimately of course, we wish to do better than this.
－At lowest order in the $\operatorname{SU}(3)$ chiral expansion one can obtain the $K \rightarrow \pi \pi$ decay amplitude by calculating $K \rightarrow \pi$ and $K \rightarrow$ vacuum matrix elements．
－In 2001，two collaborations published some very interesting（quenched）results on non－leptonic kaon decays in general and on the $\Delta I=1 / 2$ rule and $\varepsilon^{\prime} / \varepsilon$ in particular：

Collaboration（s）	$\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$	$\varepsilon^{\prime} / \varepsilon$
RBC	25.3 ± 1.8	$-(4.0 \pm 2.3) \times 10^{-4}$
CP－PACS	$9 \div 12$	$(-7 \div-2) \times 10^{-4}$
Experiments	22.2	$(17.2 \pm 1.8) \times 10^{-4}$

－This required the control of the ultraviolet problem，the subtraction of power divergences and renormalization of the operators－highly non－trivial．
－Four－quark operators mix，for example，with two quark operators \Rightarrow power divergences：

- $\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$ as a function of the meson mass.

- $\varepsilon^{\prime} / \varepsilon$ as a function of the meson mass.

- The RBC and CP-PACS simulations were quenched, and relied on the validity of lowest order χ PT in the region of approximately $400-800 \mathrm{MeV}$.
- Given the cancelations between different matrix elements (particularly O_{6} and O_{8}) the negative value of $\varepsilon^{\prime} / \varepsilon$ is not such an embarrassment but
- $\operatorname{Re} A_{0} / \operatorname{Re} A_{2}$ as a function of the meson mass.

- $\varepsilon^{\prime} / \varepsilon$ as a function of the meson mass.

- The RBC and CP-PACS simulations were quenched, and relied on the validity of lowest order χ PT in the region of approximately $400-800 \mathrm{MeV}$.
- Given the cancelations between different matrix elements (particularly O_{6} and O_{8}) the negative value of $\varepsilon^{\prime} / \varepsilon$ is not such an embarrassment but

Must do better!

Unquenched Calculation

$$
O_{(27,1)}^{3 / 2}=(\bar{s} d)_{L}\left\{(\bar{u} u)_{L}-(\bar{d} d)_{L}\right\}+(\bar{s} u)_{L}(\bar{u} d)_{L}
$$

- RBC/(UKQCD) have repeated the calculation with the 24^{3} DWF ensembles in the pion-mass range $240-415 \mathrm{MeV}$.
- For illustration consider the determination of α_{27}, the LO LEC for the $(27,1)$ operator. Satisfactory fits were obtained, but again the corrections were found to be huge, casting serious doubt on the approach.
- Soft pion theorems are not sufficiently reliable \Rightarrow need to compute $K \rightarrow \pi \pi$ matrix elements.

To arrive at this important conclusion required a truly major effort.

Unquenched Calculation

$$
O_{(27,1)}^{3 / 2}=(\bar{s} d)_{L}\left\{(\bar{u} u)_{L}-(\bar{d} d)_{L}\right\}+(\bar{s} u)_{L}(\bar{u} d)_{L}
$$

- RBC/(UKQCD) have repeated the calculation with the 24^{3} DWF ensembles in the pion-mass range $240-415 \mathrm{MeV}$.
- For illustration consider the determination of α_{27}, the LO LEC for the $(27,1)$ operator. Satisfactory fits were obtained, but again the corrections were found to be huge, casting serious doubt on the approach.
- Soft pion theorems are not sufficiently reliable \Rightarrow need to compute $K \rightarrow \pi \pi$ matrix elements.

To arrive at this important conclusion required a truly major effort.

- J.Laiho et al. challenge this conclusion.

Poster, this conference

Direct Calculations of $K \rightarrow \pi \pi$ Decay Amplitudes

- We need to be able to calculate $K \rightarrow \pi \pi$ matrix elements directly. (The RBC-UKQCD Collaboration is now undertaking a major study of $K \rightarrow \pi \pi$ Decays.)
- The main theoretical ingredients of the infrared problem with two-pions in the s-wave are now understood.
- Two-pion quantization condition in a finite-volume

$$
\delta\left(q^{*}\right)+\phi^{P}\left(q^{*}\right)=n \pi
$$

where $E^{2}=4\left(m_{\pi}^{2}+q^{* 2}\right), \delta$ is the s-wave $\pi \pi$ phase shift and ϕ^{P} is a kinematic function.
M.Lüscher, 1986, 1991, \cdots.

- The relation between the physical $K \rightarrow \pi \pi$ amplitude A and the finite-volume matrix element M

$$
|A|^{2}=8 \pi V^{2} \frac{m_{K} E^{2}}{q^{* 2}}\left\{\delta^{\prime}\left(q^{*}\right)+\phi^{P \prime}\left(q^{*}\right)\right\}|M|^{2}
$$

where $/$ denotes differentiation w.r.t. q^{*}.
L.Lellouch and M.Lüscher, hep-lat/0003023; C.h.Kim, CTS and S.Sharpe, hep-lat/0507006; N.H.Christ, C.h.Kim and T.Yamazaki hep-lat/0507009

$K \rightarrow(\pi \pi)_{I=2}$ Decays

- Computation of $K \rightarrow(\pi \pi)_{I=2}$ matrix elements does not require the subtraction of power divergences or the evaluation of disconnected diagrams.
- An exploratory quenched study with improved Wilson fermions was completed in 2004 but we did not then understand Finite-Volume corrections at non-zero total momentum.
P. Boucaud et al. hep-lat/0412029
- First results of our exploratory quenched study with Domain Wall Fermions were presented at Lattice 2009.
M.Lightman and E.J.Goode, arXiv:0912.1667
- It is convenient to use the Wigner-Eckart Theorem: (Notation - $O_{\Delta J_{z}}^{\Delta I}$)

$$
{ }_{I=2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle
$$

where
$-O_{3 / 2}^{3 / 2}$ has the flavour structure $(\bar{s} d)(\bar{u} d)$.
$-O_{1 / 2}^{3 / 2}$ has the flavour structure $(\bar{s} d)((\bar{u} u)-(\bar{d} d))+(\bar{s} u)(\bar{u} d)$.

- We can then use antiperiodic boundary conditions for the u-quark say, so that the $\pi \pi$ ground-state is $\left\langle\pi^{+}(\pi / L) \pi^{+}(-\pi / L)\right|$.
- Do not have to isolate an excited state.
- Size (L) needed for physical $K \rightarrow \pi \pi$ decay halved ($6 \mathrm{fm} \rightarrow 3 \mathrm{fm}$).
- Use the Wigner-Eckart Theorem to relate the physical $K \rightarrow \pi^{+} \pi^{0}$ matrix element to that for $K \rightarrow \pi^{+} \pi^{+}$

$$
I=2\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle
$$

- Calculate the $K \rightarrow \pi^{+} \pi^{+}$matrix element with the u-quark with twisted boundary conditions with twisting angle θ.
- Perform a Fourier transform of one of the pion interpolating operators with additional momentum $-2 \pi / L$.
The ground state now corresponds to one pion with momentum θ / L and the other with momentum $(\theta-2 \pi) / L$.
- The corresponding $\pi \pi \mathrm{s}$-wave phase-shift can then be obtained by the Lüscher formula as a function of $\theta \Rightarrow$ this allows for the derivative of the phase-shift to be evaluated directly at the masses being simulated.
- We have carried this procedure out in an exploratory calculation. Fig
- Unfortunately this technique does not work for $K \rightarrow(\pi \pi)_{I=0}$ decays.

Exploratory Evaluation of the Lellouch-Lüscher Factor

C.h. Kim and CTS, arXiv:1003.3191

LL factor

$$
m_{q}=0.004
$$

LL factor

$m_{q}=0.002$

- Use the Wigner-Eckart Theorem to relate the physical $K \rightarrow \pi^{+} \pi^{0}$ matrix element to that for $K \rightarrow \pi^{+} \pi^{+}$

$$
I=2\left\langle\pi^{+}\left(p_{1}\right) \pi^{0}\left(p_{2}\right)\right| O_{1 / 2}^{3 / 2}\left|K^{+}\right\rangle=\frac{3}{2}\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right)\right| O_{3 / 2}^{3 / 2}\left|K^{+}\right\rangle
$$

- Calculate the $K \rightarrow \pi^{+} \pi^{+}$matrix element with the d-quark with twisted boundary conditions with twisting angle θ.
- Perform a Fourier transform of one of the pion interpolating operators with additional momentum $-2 \pi / L$.
The ground state now corresponds to one pion with momentum θ / L and the other with momentum $(\theta-2 \pi) / L$.
- The corresponding $\pi \pi \mathrm{s}$-wave phase-shift can then be obtained by the Lüscher formula as a function of $\theta \Rightarrow$ this allows for the derivative of the phase-shift to be evaluated directly at the masses being simulated.
- We have carried this procedure out in an exploratory calculation. Fig
- Unfortunately this technique does not work for $K \rightarrow(\pi \pi)_{I=0}$ decays.

Preliminary $\Delta I=3 / 2$ Matrix Elements

RBC-UKQCD, M.Lightman and E.Goode, this conference

- M.Lightman presented results from a $32^{3} \times 64 \times 32$ DWF+DSDR action, with $m_{\pi}=145.6(5) \mathrm{MeV}$ (unitary pion $m_{\pi}=180 \mathrm{MeV}$) on a coarse lattice $\left(a^{-1}=1.4 \mathrm{GeV}\right)$.
R.Mawhinney, this conference
- Preliminary results:
$\operatorname{Re}\left(A_{2}\right)=1.56(07)_{\text {stat }}(25)_{\text {syst }} \times 10^{-8} \mathrm{GeV}$ Experiment: $\operatorname{Re}\left(A_{2}\right)=1.50 \times 10^{-8} \mathrm{GeV}$ $\operatorname{Im}\left(A_{2}\right)=-(9.6 \pm 0.4 \pm 2.4) \times 10^{-13} \mathrm{GeV}$ NPR for $\operatorname{Im} A_{2}$ to be completed: 25% error $\Rightarrow 15 \%$.

$O_{(27,1)}^{\prime 3 / 2}=(\bar{s} d)_{L}(\bar{u} d)_{L}$

$O_{7}^{\prime 3 / 2}=(\bar{s} d)_{L}(\bar{u} d)_{R}$

$$
O_{8}^{\prime 3 / 2}=\left(\bar{s}^{i} d^{j}\right)_{L}\left(\bar{u}^{j} d^{i}\right)_{R}
$$

Sample plateaus for the matrix elements at matched kinematics $\left(p_{\pi}=\sqrt{2} p_{\text {min }}\right)$.

$K \rightarrow(\pi \pi)_{I=0}$ Decays

- The $I=0$ final state has vacuum quantum numbers.
- Vacuum contribution must be subtracted; disconnected diagrams require statistical cancelations to obtain the $e^{-2 m_{\pi} t}$ behaviour.
- Consider first the two-pion correlation functions, which are an important ingredient in the evaluation of $K \rightarrow \pi \pi$ amplitudes.

- For $\mathrm{I}=2 \pi \pi$ states the correlation function is proportional to $\mathrm{D}-\mathrm{C}$.
- For $\mathrm{I}=0 \pi \pi$ states the correlation function is proportional to $2 \mathrm{D}+\mathrm{C}-6 \mathrm{R}+3 \mathrm{~V}$.

The major practical difficulty is to subtract the vacuum contribution with sufficient precision.

- We are performing high-statistics experiments on a $16^{3} \times 32$ lattice, $a^{-1}=1.73 \mathrm{GeV}, m_{\pi}=420 \mathrm{MeV}$, propagators evaluated from each time-slice.

Qi Liu - this conference

Diagrams contributing to two-pion correlation functions

- For $\mathrm{I}=2 \pi \pi$ states the correlation function is proportional to $\mathrm{D}-\mathrm{C}$.
- For $\mathrm{I}=0 \pi \pi$ states the correlation function is proportional to $2 \mathrm{D}+\mathrm{C}-6 \mathrm{R}+3 \mathrm{~V}$.

RBC/UKQCD, Qi Liu - this conference

Two-pion Correlation Functions

- $I=2$ (Correlator and Effective Mass)
- $E_{\pi \pi}=0.5054(15)$
- $I=0$ (Correlator and Effective Mass)
- $E_{\pi \pi}=0.450(17)$

We are now doubling the statistics.

- $I=0$ (Correlator - V and Effective Mass)
- $E_{\pi \pi}=0.4392(59)$

$K \rightarrow(\pi \pi)_{I=0}$ Decays

Type1

Type4

Type2

Mix3

Type3

Mix4

- There are 48 different contractions and we classify the contributions into the 6 different types illustrated above.
- Mix3 and Mix4 are needed to subtract the power divergences which are proportional to matrix elements of $\bar{s} \gamma_{5} d$.

Sample Results for $Q_{6}=\left(\bar{s}^{i} d^{j}\right)_{L} \sum_{q}\left(\bar{q}^{j} q^{i}\right)_{R}$

- These results are for the $K \rightarrow \pi \pi$ (almost) on-shell amplitudes with 420 MeV pions at rest:

$\operatorname{Re} A_{0}$	$(3.0 \pm 0.8) 10^{-7} \mathrm{GeV}$
$\operatorname{Im} A_{0}$	$-(2.9 \pm 2.2) 10^{-11} \mathrm{GeV}$
$\operatorname{Re} A_{2}$	$(5.395 \pm 0.045) 10^{-8} \mathrm{GeV}$
$\operatorname{Im} A_{2}$	$-(7.79 \pm 0.08) 10^{-13} \mathrm{GeV}$

- This is an exploratory exercise in which we are learning how to do the calculation.
- We are currently doubling the statistics to confirm our belief that a direct calculation appears to possible.
- The next stage is to proceed towards physical kinematics.
- A huge amount of information has been obtained about decay rates and CP-asymmetries for $B \rightarrow M_{1} M_{2}$ decays (over 100 channels).
- With just a few exceptions (e.g. CP-asymmetry in $B \rightarrow J / \Psi K_{s}$) our ability to deduce fundamental information about CKM matrix elements is limited by our inability to quantify the non-perturbative strong interaction effects.
- Most approaches were based on Naive Factorization:

$$
\left\langle\pi^{+} \pi^{-}\right|(\bar{u} b)_{V-A}(\bar{d} u)_{V-A}\left|\bar{B}_{d}\right\rangle \rightarrow\left\langle\pi^{-}\right|(\bar{d} u)_{V-A}|0\rangle\left\langle\pi^{+}\right|(\bar{u} b)_{V-A}\left|\bar{B}_{d}\right\rangle
$$

- $\left\langle\pi^{-}\right|(\bar{d} u)_{V-A}|0\rangle$ is known $\left(f_{\pi}\right)$.
- $\left\langle\pi^{+}\right|(\bar{u} b)_{V-A}\left|\bar{B}_{d}\right\rangle$ is known in principle $\left(F_{0}^{B \rightarrow \pi}\left(m_{\pi}^{2}\right)\right)$.
- No rescattering in the final state. No strong phase-shifts.
- μ dependence does not match on the two sides.

Nonleptonic B-Decays

- In 1999 we realized that in the limit $m_{b} \rightarrow \infty$, the long distance effects factorise into simpler universal quantities:
M.Beneke, G.Buchalla, M.Neubert, CTS (BBNS)

$$
\begin{aligned}
& \left\langle M_{1}, M_{2}\right| O_{i}|B\rangle=\sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d u T_{i j}^{I}(u) \Phi_{M_{2}}(u)+\left(M_{1} \leftrightarrow M_{2}\right) \\
& \quad+\int_{0}^{1} d \xi d u d v T_{i}^{I I}(\xi, u, v) \Phi_{B}(\xi) \Phi_{M_{1}}(v) \Phi_{M_{2}}(u)
\end{aligned}
$$

Implications of Factorization

- The significance and usefulness of the factorization formula stems from the fact that the non-perturbative quantities which appear on the RHS are much simpler than the original matrix elements which appear on the LHS.
They either reflect universal properties of a single meson state (the light-cone distribution amplitudes) or refer to a $B \rightarrow$ meson transition matrix element of a local current (form-factor).
- Conventional (naive) factorization is recovered as a rigorous prediction in the infinite quark-mass limit (i.e. neglecting $O\left(\alpha_{s}\right)$ and $O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections).
- Perturbative corrections to naive factorization can be computed systematically. The results are, in general, non-universal (i.e. process dependent).
- All strong interaction phases are generated perturbatively in the heavy quark limit.
- The factorization formulae are valid up to $O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ corrections.
- Many observables of interest for $C P$-violation become accessible. The precision of the calculations is limited by our knowledge of the wave-functions and of the power corrections.
- For a comprehensive study of 96 PP and PV decay modes see

Beneke and Neubert, hep-ph/0308039.

- The main limitation of the factorization framework is due to the fact that m_{b} is not so large, so that CKM and chiral enhancements to non-factorizable $O\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ terms are important.
- At present we do not know how to begin computing $B \rightarrow M_{1} M_{2}$ matrix elements!
- Many intermediate states contribute.
- What can lattice simulations contribute to the factorization formula:
- Parton distribution amplitudes of light mesons (at least the low moments) $\sqrt{ }$.
- $B \rightarrow M$ form-factors $\sqrt{ }$.
- Parton distribution amplitudes of B-meson X.
- I now briefly explain why we have not been able to compute ϕ^{B} or its moments.

$$
\phi_{\alpha \beta}^{B}\left(\tilde{k}_{+}\right)=\left.\int d z_{-} e^{i \tilde{k}_{+} z-}\langle 0| \bar{u}_{\beta}(z)[z, 0] b_{\alpha}(0)|B\rangle\right|_{z^{+}, z_{\perp}=0}
$$

- ϕ^{B} is convoluted with the perturbative hard-scattering amplitude $T_{i}^{I I} \Rightarrow$ we need

$$
\frac{\sqrt{2}}{\lambda_{b}}=\int_{0}^{\infty} \frac{d \tilde{k}_{+}}{\tilde{k}_{+}} \phi_{+}^{B}\left(\tilde{k}_{+}\right) .
$$

(In higher orders of perturbation theory factors containing $\log \left(\tilde{k}_{+}\right)$appear.)

- At large $\tilde{k}_{+}, \phi^{B}\left(\tilde{k}_{+}\right) \sim 1 / \tilde{k}_{+}$, but the convolution is finite.
- Positive moments of $\phi^{B}\left(\tilde{k}_{+}\right)$, which can be written in terms of local operators, diverge as powers of $1 / a \Rightarrow$ need a technique to subtract these divergences with sufficient precision.
- We need new theoretical ideas for the lattice to contribute to $B \rightarrow M_{1} M_{2}$ decays.

Conclusions

- At this conference we are seeing much beautiful phenomenology, both in improved precision and in the extension of computations beyond the standard quantities.

Recent years: Quenched $\Rightarrow \gtrsim 500 \mathrm{MeV}$ pions \Rightarrow "Almost physical pions"

- This improvement has to be continued vigorously if precision flavour physics is to play a complementary role to large p_{\perp} discovery experiments at the LHC in unraveling the next level of fundamental physics
- We do not know how to compute some important phenomenological quantities.

At the previous lattice conference which Guido Martinelli helped to organise
(Lattice 1989 in Capri) Ken Wilson made the seemingly pessimistic prediction that it will take about 30 years to have precision Lattice QCD.

We have 9 years left, but are well on our way now.

Conclusions

- At this conference we are seeing much beautiful phenomenology, both in improved precision and in the extension of computations beyond the standard quantities.

Recent years: Quenched $\Rightarrow \gtrsim 500 \mathrm{MeV}$ pions \Rightarrow "Almost physical pions"

- This improvement has to be continued vigorously if precision flavour physics is to play a complementary role to large p_{\perp} discovery experiments at the LHC in unraveling the next level of fundamental physics
- We do not know how to compute some important phenomenological quantities.
- At the previous lattice conference which Guido Martinelli helped to organise (Lattice 1989 in Capri) Ken Wilson made the seemingly pessimistic prediction that it will take about 30 years to have precision Lattice QCD.

We have 9 years left, but are well on our way now.

- A related topic is the study of the $\eta-\eta^{\prime}$ system.
- To study η and η^{\prime} we also need to evaluate disconnected diagrams.

$C_{l l}$

$C_{s s}$

$D_{l l}$

- Here l represents the u or d quark $\left(m_{u}=m_{d}\right)$ and s the strange quark.
- Let

$$
O_{l}=\frac{\bar{u} \gamma_{5} u+\bar{d} \gamma_{5} d}{\sqrt{2}} \quad \text { and } \quad O_{s}=\bar{s} \gamma_{5} s
$$

- We calculate the correlation functions

$$
X_{\alpha \beta}(t)=\frac{1}{32} \sum_{t^{\prime}=0}^{31}\left\langle O_{\alpha}\left(t+t^{\prime}\right) O_{\beta}\left(t^{\prime}\right)\right\rangle \quad \text { where } \quad \alpha, \beta=l, s
$$

\square Sources are generated for each time slice ($\mathrm{T}=32$).

- $X_{l s} \neq 0$ because of the $D_{l s}=D_{s l}$ diagrams.
- The four correlation functions correspond to the diagrams as follows:

$$
\left(\begin{array}{ll}
X_{l l} & X_{l s} \\
X_{s l} & X_{s s}
\end{array}\right)=\left(\begin{array}{cc}
C_{l l}-2 D_{l l} & -\sqrt{2} D_{l s} \\
-\sqrt{2} D_{s l} & C_{s s}-D_{s s}
\end{array}\right)
$$

- The usual expectation that disconnected diagrams and the resulting mixing are small does not apply here.

- We diagonalize $X(t)$ at each t :

$$
X(t)=A^{\mathrm{T}}\left(\begin{array}{cc}
e^{-m_{\eta} t} & 0 \\
0 & e^{-m_{\eta^{\prime}} t}
\end{array}\right) A, \quad \text { where } \quad A=\left(\begin{array}{cc}
\langle\eta| O_{l}|0\rangle & \langle\eta| O_{s}|0\rangle \\
\left\langle\eta^{\prime}\right| O_{l}|0\rangle & \left\langle\eta^{\prime}\right| O_{s}|0\rangle
\end{array}\right)
$$

- To be more precise we diagonalize $X\left(t_{0}\right)^{-1} X(t)$.
- In the standard phenomenological treatment of $\eta-\eta^{\prime}$ mixing

$$
\binom{|\eta\rangle}{\left|\eta^{\prime}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{|8\rangle_{\mathrm{sym}}}{|1\rangle_{\mathrm{sym}}}
$$

- In the O_{8} and O_{1} basis

$$
A=\left(\begin{array}{cc}
\sqrt{Z_{8}} \cos \theta & -\sqrt{Z_{1}} \sin \theta \\
\sqrt{Z_{8}} \sin \theta & \sqrt{Z_{1}} \cos \theta
\end{array}\right) \quad \text { where } \quad \text { sym }\langle a| O_{b}|0\rangle=\sqrt{Z_{a}} \delta_{a b} .
$$

- If this model is correct then the columns of A are orthogonal. We find for the dot product - -0.009 (49) for $m_{l}=0.01$ and $0.008(24)$ for $m_{l}=0.02$.
- The mixing angle can be determined from

$$
\frac{A_{\eta 1} A_{\eta^{\prime} 8}}{A_{\eta 8} A_{\eta^{\prime} 1}}=-\tan ^{2} \theta
$$

$\eta-\eta^{\prime}$ mixing

- We find $m_{\eta}=583(15) \mathrm{MeV}$ and $m_{\eta^{\prime}}=853(123) \mathrm{MeV}$ and $\theta=-9.2(4.7)^{\circ}$. (Statistical errors only.)
- To our accuracy, our calculation demonstrates that QCD can explain the relatively large mass of the ninth pseudoscalar meson and its small mixing with the $\mathrm{SU}(3)$ octet state.
- There is plenty more to do!

6. Long Distance Contributions

- We are used to calculating the short distance contributions to physical processes.

For example in neutral-kaon mixing:

- In many cases the short-distance contribution is the dominant term, but long-distance contributions are not always negligible:
- If GIM suppression is logarithmic.
- CKM enhancement (even if GIM suppression is power like).
- As lattice computations of the short-distance contributions become more precise we should try to learn how to compute these long-distance contributions effectively. Early thoughts in this direction include:
- Rare Kaon Decays.
G.Isidori, G.Martinelli, P.Turchetti, hep-lat/0506026
- Neutral Kaon Mixing.

Rare Kaon Decays

- $K \rightarrow \pi \ell^{+} \ell^{-}$Decays. The main non-perturbative correlators for these decays are:
G.Ecker, A.Pich, E.de Rafael, (1987);
G. D'Ambrosio, G.Ecker, G.Isidori, J.Portolés, hep-ph/9808289

$$
-i \int d^{4} x e^{-i q \cdot x}\left\langle\pi^{j}(p)\right| T\left\{J_{\mathrm{em}}^{\mu}(x)\left[Q_{i}^{u}(0)-Q_{i}^{c}(0)\right]\right\}\left|K^{j}(k)\right\rangle,
$$

where $q=k-p$ is the momentum transfer and $Q_{i}(\mathrm{i}=1,2)$ are four quark operators.

- $K^{+} \rightarrow \pi^{+} v \bar{v}$ Decays. Suppression of long-distance effects is partially compensated by a large CKM coefficient and the dominant T-product is:
G.Buchalla, A.Buras, hep-ph/9308272, hep-ph/9901288;
A.Falk, A.Lewandowski, A.Petrov, hep-ph/0012099

$$
-i \int d^{4} x e^{-i q \cdot x}\left\langle\pi^{+}(p)\right| T\left\{J_{Z}^{\mu}(x)\left[Q_{i}^{u}(0)-Q_{i}^{c}(0)\right]\right\}\left|K^{+}(k)\right\rangle
$$

- Without the presence of the Q_{i} the calculation is just the by-now standard one of $K \rightarrow \pi$ form-factors.
- With q^{2} below any physical threshold, IMT avoid considering the corresponding Minkowski->Euclidean issues.

Rare Kaon Decays - Cont.

- The generic calculation is of the correlation functions

$$
-i \int d^{4} x e^{-i q \cdot x}\langle 0| \phi_{\pi}\left(t_{\pi}, \vec{p}\right) J_{X}^{\mu}(x)\left[Q_{i}^{u}(0)-Q_{i}^{c}(0)\right] \phi_{K}^{\dagger}\left(t_{K}, \vec{k}\right)|0\rangle,
$$

with $t_{\pi}>0$ and $t_{K}<0$.

- The main issue discussed in IMT is that of renormalization and the subtraction of power divergences.
- Mixing of operators Q_{i} with lower dimensional operators. $\sqrt{ }$
- Contact terms between the Q_{i} and the interpolating operators - spectral analysis needed.
- Contact terms between the Q_{i} and currents depend on the currents.

For $K \rightarrow \pi \ell^{+} \ell^{-}$decays, gauge invariance \Rightarrow no power divergences. GIM mechanism not necessary

For $K^{+} \rightarrow \pi^{+} v \bar{v}$ decays, GIM used to cancel power divergences and the linear divergence is absent in regularizations which preserve chiral symmetry .

- General arguments checked by one-loop perturbative calculations.
- IMT believe that their results open a new field of interesting physical applications to the lattice community.

Start with the correlation function：

$$
C\left(t_{3}, t_{b}, t_{a}, t_{0}\right)=\frac{1}{2} \sum_{t_{1}, t_{2}=t_{a}}^{t_{b}}\langle 0| \phi_{K}\left(t_{3}\right) T\left\{H\left(t_{2}\right) H\left(t_{1}\right)\right\} \phi_{K}\left(t_{0}\right)|0\rangle
$$

where

$$
H(t)=\sum_{\vec{x}} \mathscr{H}^{\Delta S=1}(t, \vec{x})
$$

and $t_{3} \gg t_{b}>t_{a} \gg t_{0}$ ．
－By calculating C for sufficiently large $t_{b}-t_{a}$ we obtain ΔM ：

$$
C\left(t_{3}, t_{b}, t_{a}, t_{0}\right) \simeq-Z_{K}^{2} \Delta M\left(t_{b}-t_{a}\right) e^{-m_{K}\left(t_{3}-t_{0}\right)}
$$

－Subtraction of short－distance contribution．
－Finite－volume corrections included à la Lellouch－Luscher．
－＂With sufficient computing power a calculation of $m_{K_{S}}-m_{K_{L}}$ is possible＂．

