Calculation of helium nuclei in quenched lattice QCD

Takeshi YAMAZAKI<br>Center for Computational Sciences University of Tsukuba<br>Y. Kuramashi and A. Ukawa for PACS-CS Collaboration<br>Ref. arXiv:0912.1383 [hep-lat]

Lattice2010 @ ATAHOTEL Tanka Village Resort
June 14 - 19, 2010

## 1. Introduction

Spectrum of Nuclei
success of Shell model since 1949: Jensen and Mayer degrees of freedom of protons and neutrons

Spectrum of nucleon (proton and neutron)
degrees of freedom of quarks and gluons
success of non-perturbative calculation of QCD such as lattice QCD

Motivation :
Understand property and structure of nuclei from QCD
If we can study nuclei from QCD, we may be able to

1. reproduce spectrum of nuclei
2. predict property of nuclei hard to calculate or observe such as neutron rich nuclei

## multi-nucleon system from lattice QCD

1. $\wedge \wedge$ system ( $\mathrm{S}=-2, \mathrm{I}=0$ )

H dibaryon: $\Delta E_{H} \sim 80 \mathrm{MeV}$ ' 77 Jaffe
'85 Mackenzie \& Thacker: Quenched QCD
unbound
'88 Iwasaki et al. : Quenched QCD
bound : binding energy $=500-700 \mathrm{MeV}$
'99 Pochinsky et al. : Quenched QCD
unbound: $E_{\wedge \wedge}-2 m_{\wedge}>110 \mathrm{MeV}$
'00 Wetzorke et al. : Quenched QCD
hard to decide unbound or slightly bound
'02 Wetzorke \& Karsch : Quenched QCD
unbound: through L dependence
H dibaryon: unbound
'09 NPLQCD : $N_{f}=2+1$ QCD
$E_{\Lambda \wedge}-2 m_{\Lambda}=-4.1(1.2)(1.4) \mathrm{MeV}$ : require additional volumes Related talks: Inoue [Parallel 49, Fri], Sasaki [Parallel 49, Fri]

## multi-nucleon system from lattice QCD

2. NN system ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$

Deuteron: ${ }^{3} \mathrm{~S}_{1}$ channel $\Delta E_{d}=2.2 \mathrm{MeV}$

'09 Ishii et al.: $N_{f}=2+1$ QCD

wave function $\rightarrow a_{0}>0$

## multi-nucleon system from lattice QCD

2. $N N$ system ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$

Deuteron: ${ }^{3} \mathrm{~S}_{1}$ channel $\Delta E_{d}=2.2 \mathrm{MeV}$

'09 Ishii et al.: $N_{f}=2+1$ QCD

wave function $\rightarrow a_{0}>0$

## multi-nucleon system from lattice QCD

2. NN system ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$

Deuteron: ${ }^{3} \mathrm{~S}_{1}$ channel $\Delta E_{d}=2.2 \mathrm{MeV}$

'09 Ishii et al.: $N_{f}=2+1$ QCD wave function $\rightarrow a_{0}>0$ Deuteron: unbound due to $m_{\pi} \gtrsim 0.3 \mathrm{GeV}$

NN potential : Murano [Parallel 38, Thu.]

## multi-nucleon system from lattice QCD

3. NNN system

$$
\begin{aligned}
& \text { Triton: } J^{P}=\frac{1}{2}^{+} I=\frac{1}{2} \Delta E_{\text {Triton }}=8.5 \mathrm{MeV} \\
& \text { '09 NPLQCD }: N_{f}=2+1 \text { QCD } m_{\pi}=0.39 \mathrm{GeV} L=2.5 \mathrm{fm} \\
& \text { E}^{0} \mathrm{E}^{0} n \text { and pmn channels } \\
& \quad E_{p m n}-3 m_{N} \gtrsim 0 \\
& \quad \text { Triton: likely unbound }
\end{aligned}
$$

Three-nucleon force : Doi [Parallel 49, Fri.]

## multi-nucleon system from lattice QCD

1. $\wedge \wedge$ system (Quenched QCD)
'85 Mackenzie \& Thacker '00 Wetzorke et al.
'88 Iwasaki et al. '02 Wetzorke \& Karsch
'99 Pochinsky et al.
H dibaryon: unbound
2. $N N$ system ${ }^{3} S_{1}$ and ${ }^{1} S_{0}$
'95 Fukugita et al. : Quenched QCD
'06 NPLQCD : $N_{f}=2+1$ QCD
'08 Ishii et al. : Quenched and $N_{f}=2+1$ QCD
'09 NPLQCD : $N_{f}=2+1$ QCD
Deuteron: unbound due to $m_{\pi} \gtrsim 0.3 \mathrm{GeV}$
3. NNN system
'09 NPLQCD : $N_{f}=2+1$ QCD
Triton: likely unbound
Helium nucleus: larger binding energy, $\Delta E_{\mathrm{He}}=28.3 \mathrm{MeV}$ He : double magic numbers $Z=2, N=2$

In this work : Exploratory study for He and ${ }^{3} \mathrm{He}$ nuclei

## Outline

1. Introduction
2. Problems of multi-nucleon bound state
3. Simulation parameters
4. Results for He and ${ }^{3} \mathrm{He}$
5. Summary

## 2. Problems of multi-nucleon bound state

1. Statistical error
$\begin{array}{cl}m_{\pi} & \rightarrow \text { small } \\ \# \text { nucleon } & \rightarrow \text { large }\end{array} \Rightarrow \frac{\text { noise }}{\text { signal }} \rightarrow$ large
Avoid large statistical fluctuation
unphysically heavy quark mass $+O\left(10^{3}\right)$ measurements

$$
m_{\pi}=0.8 \mathrm{GeV} \text { and } m_{N}=1.62 \mathrm{GeV}
$$

Need new method at lighter $m_{\pi}$
Orginos [Parallel 22, Tue.], Foley, Wong, Juge [Parallel 34, Tue.]
2. Calculation cost
3. Identification of bound state in finite volume

## Calculation cost

$C_{\mathrm{He}}(t)=\langle 0| \mathrm{He}(t) \overline{\mathrm{He}}(0)|0\rangle$ with $\mathrm{He}=p^{2} n^{2}=[u d u]^{2}[d u d]^{2}$
Number of Wick contraction $N_{u}!\times N_{d}!=\left(2 N_{p}+N_{n}\right)!\times\left(2 N_{n}+N_{p}\right)$ ! contain identical contractions

$$
\begin{aligned}
\mathrm{He}: & 6!\times 6!=518400 \\
3^{\mathrm{He}}: & 5!\times 4!=2880
\end{aligned}
$$

Reduction of contractions
Symmetries
$p \leftrightarrow p, n \leftrightarrow n$ in He operator
Isospin all $p \leftrightarrow$ all $n$
Calculate two contractions simultaneously
$u \leftrightarrow u$ in $p$ or $d \leftrightarrow d$ in $n$

## Calculation cost (cont'd)

$C_{\mathrm{He}}(t)=\langle 0| \mathrm{He}(t) \overline{\mathrm{He}}(0)|0\rangle$ with $\mathrm{He}=p^{2} n^{2}=[u d u]^{2}[d u d]^{2}$
Number of Wick contraction $N_{u}!\times N_{d}!=\left(2 N_{p}+N_{n}\right)!\times\left(2 N_{n}+N_{p}\right)$ ! contain identical contractions

$$
\begin{array}{rllc}
\mathrm{He}: & 6!\times 6!=518400 & \longrightarrow & 1107 \\
3 \mathrm{He}: & 5!\times 4!=2880 \quad & \longrightarrow & 93
\end{array}
$$

Further reduction: avoid same calculations of dirac and color indices
Block of three quark propagators $B_{3}$
zero momentum nucleon operator in sink time slice
Blocks of two $B_{3}$
1, 2, 3 dirac contractions carried out
Multi-meson systems : Detmold [Parallel 34, Tue.] arXiv:1001.2768
Recursion relations: $R_{n+1}=\left\langle R_{n}\right\rangle \cdot R_{1}-n R_{n} \cdot R_{1}$ multi-meson with multi-species: $n-\pi$ 's $+m-K$ 's system, etc.

Identification of bound state in finite volume $\langle 0| \mathrm{He}(t) \overline{\mathrm{He}}(0)|0\rangle \underset{t \gg 1}{\longrightarrow} C e^{-E t}\left(\mathrm{He}: J^{P}=0^{+}, I=0\right)$

Measured state is whether bound state or not?
Example) Two-particle system
observe small $\Delta E=E-2 m<0$ at single $L$


Identification of bound state in finite volume (cont'd) Example) Two-particle system observe small $\Delta E=E-2 m<0$ at single $L$


Bound state : $\Delta E=-\Delta E_{\text {bind }}+O\left(\mathrm{e}^{-\gamma L}\right)<0$
Beane et al., PLB585:106(2004), Sasaki \& TY, PRD74:114507(2006)

Identification of bound state in finite volume (cont'd) Example) Two-particle system

$$
\text { observe small } \Delta E=E-2 m<0 \text { at single } L
$$



Attractive scattering state : $\triangle E=O\left(-\frac{a_{0}}{M L^{3}}\right)<0 \quad\left(a_{0}>0\right)$
Lüscher, CMP105:153(1986), NPB354:531(1991)
C.f.) $N$-particle scattering state : $\Delta E=E_{\text {scat }}-N m=O\left(-\frac{N_{2} C_{2} a_{0}}{M L^{3}}\right)$

Beane et al., PRD76:074507(2007)

Identification of bound state in finite volume (cont'd) Example) Two-particle system
observe small $\Delta E=E-2 m<0$ at single $L$


Hard to distinguish at single $L$
Bound state and Attractive scattering state

Identification of bound state in finite volume (cont'd) Example) Two-particle system


Identification of bound state in finite volume (cont'd) Example) Two-particle system


Identification of bound state in finite volume (cont'd) Example) Two-particle system


Identification of bound state in finite volume (cont'd) Example) Two-particle system


Identify bound state from volume dependence of $\Delta E$
observe constant in infinite volume limit with $L=3.1,6.1,12.3 \mathrm{fm}$
Other methods: spectral weight: Mathur et al., PRD70:074508(2004) anti-periodic boundary.: Ishii et al., PRD71:034001(2005)

## 3. Simulation parameters

- Quenched Iwasaki gauge action at $\beta=2.416$

$$
a^{-1}=1.54 \mathrm{GeV} \text { with } r_{0}=0.49 \mathrm{fm}
$$

- Tad-pole improved Wilson fermion action

$$
m_{\pi}=0.8 \mathrm{GeV} \text { and } m_{N}=1.62 \mathrm{GeV}
$$

- Three volumes

| $L$ | $L[\mathrm{fm}]$ | $N_{\text {conf }}$ | $N_{\text {meas }}$ |
| :---: | :---: | :---: | :---: |
| 24 | 3.1 | 2500 | 2 |
| 48 | 6.1 | 400 | 12 |
| 96 | 12.3 | 200 | 12 |

- Exponential smearing sources $q(\vec{x})=A \exp (-B|\vec{x}|)$

$$
\begin{gathered}
S_{1} \quad S_{2} \\
(A, B)=(0.5,0.5),(0.5,0.1) \text { for } L=24 \\
(A, B)=(0.5,0.5),(1.0,0.4) \text { for } L=48,96
\end{gathered}
$$

- quark operator with non-relativistic projection in nucleon operator

Simulations:
PACS-CS at Univ. of Tsukuba, and HA8000 at Univ. of Tokyo

## 4. Results

Effective mass of He and ${ }^{3} \mathrm{He}$ nuclei at $L=48$

$$
m_{\mathrm{He}}(t)=\log \left(\frac{C_{\mathrm{He}}(t)}{C_{\mathrm{He}}(t+1)}\right)
$$




- Clear signal in $t<12$, but larger error in $t \geq 12$
- consistent plateaus in $8 \lesssim t \leq 12$


## 4. Results (cont'd)

Effective energy shift $\Delta E_{L}=m_{\mathrm{He},{ }^{3} \mathrm{He}}-N m_{N}$ of He nuclei at $L=48$

$$
\Delta E_{L}(t)=\log \left(\frac{R(t)}{R(t+1)}\right), \quad R_{\mathrm{He}}(t)=\frac{C_{\mathrm{He}}(t)}{\left(C_{N}(t)\right)^{4}}, \quad R_{3 \mathrm{He}}(t)=\frac{C_{3_{\mathrm{He}}}(t)}{\left(C_{N}(t)\right)^{3}}
$$




- $\Delta E_{L}<0$ in $8 \lesssim t \leq 12$
- consistent plateaus in $8 \lesssim t \leq 12$


## 4. Results (cont'd)

Volume dependence of $\Delta E_{L}$ of He nuclei



- $\Delta E_{L}<0$ in three volumes $\Leftarrow$ statistically independent ensembles
- Small volume dependence
- Infinite volume limit with $\Delta E_{L}=-\Delta E_{\text {bind }}+C / L^{3}$
- Non-zero binding energy in infinite volume limit


## 4. Results (cont'd)

Volume dependence of $\Delta E_{L}$ of He nuclei



- Same order to experimental values
- Binding increases as mass number in experiment, but inconsistent
$\Delta E_{\mathrm{He}} / 4=6.9(2.0)(1.4) \mathrm{MeV}$ and $\Delta E_{3 \mathrm{He}} / 3=6.1(1.2)(1.0) \mathrm{MeV}$ mainly caused by heavy quark mass in calculation, probably


## 5. Summary

- Exploratory study of helium nuclei in quenched lattice QCD
- Unphysically heavy quark mass
- Reduction of calculation cost with some techniques
- Volume dependence of energy shift from free multi-nucleon state

Non-zero energy shift in infinite volume limit $\rightarrow \mathrm{He}$ and ${ }^{3} \mathrm{He}$ are bound at $m_{\pi}=0.8 \mathrm{GeV}$

## Future work

- Quark mass dependence of $\Delta E$
- Reduction of statistical error
- Deuteron bound state
- Larger nuclei $\Leftarrow$ need other technique

$$
\mathrm{Li}^{6}:(9!)^{2}=131681894400 \xrightarrow[\text { current method }]{ } \sim 800000
$$

- Dynamical quark effect


## Back up

Effective energy shift $\Delta E_{L}=m_{\mathrm{He},{ }^{3} \mathrm{He}}-N m_{N}$ of He nuclei at $L=96$

$$
\Delta E_{L}(t)=\log \left(\frac{R(t)}{R(t+1)}\right), \quad R_{\mathrm{He}}(t)=\frac{C_{\mathrm{He}}(t)}{\left(C_{N}(t)\right)^{4}}, \quad R_{3_{\mathrm{He}}}(t)=\frac{C_{3_{\mathrm{He}}}(t)}{\left(C_{N}(t)\right)^{3}}
$$




Lüscher's finite volume method
CMP105:153(1986), NPB354:531(1991)

$$
\begin{aligned}
& p \cot \delta(p)=\frac{Z\left(1 ; q^{2}\right)}{L \pi} \\
& Z\left(s ; q^{2}\right)=\sum_{\mathbf{n}} \frac{1}{\left(\mathbf{n}^{2}-q^{2}\right)^{s}}, \quad q=\frac{L p}{2 \pi}, \quad E=2 \sqrt{m^{2}+p^{2}}
\end{aligned}
$$

Expansion at $p^{2}=0$

$$
\begin{array}{r}
\Delta E=\frac{p^{2}}{m}=-\frac{4 \pi a_{0}}{m L^{3}}\left[1+c_{1} \frac{a_{0}}{L}+c_{2}\left(\frac{a_{0}}{L}\right)^{2}+\mathcal{O}\left(L^{-3}\right)\right] \\
c_{1}=-2.837297, c_{2}=6.375183
\end{array}
$$

## Lücsher's method and bound state

Bound state: $p^{2}=-\kappa^{2}=-\gamma^{2} \neq 0$ in $L \rightarrow \infty \Longleftrightarrow q^{2}=-q_{*}^{2} \rightarrow-\infty$.
Behavior of zeta function at $q^{2} \rightarrow-\infty \quad$ Beane it et al., PLB585:106(2004)

$$
\begin{aligned}
& Z\left(1 ; q^{2}\right)=-2 \pi^{2} q_{*}+\sum_{\vec{n} \in Z^{3}} \frac{\pi}{\sqrt{n^{2}}} \mathrm{e}^{-2 \pi q_{*} \sqrt{n^{2}}} \\
& \quad \text { at } q^{2}<0\left(q_{*}>0\right) \text { Elizalde, CMP198:83(1998) }
\end{aligned}
$$

At large $L$

$$
\begin{aligned}
p \cot \delta(p)=\kappa \cot \sigma(\kappa) & =\frac{1}{L \pi}\left(-2 \pi^{2} q_{*}+\mathcal{O}\left(\mathrm{e}^{-q_{*}}\right)\right) \\
& =-\kappa-\mathcal{O}\left(\mathrm{e}^{-\kappa L} / L\right) \\
\sigma(\gamma)=-\pi / 4 & \text { only at } L \rightarrow \infty
\end{aligned}
$$

Expansion at $p^{2}=-\gamma^{2}$

$$
\Delta E \approx-\frac{\kappa^{2}}{m}=-\frac{\gamma^{2}}{m}+\mathcal{O}\left(\mathrm{e}^{-\gamma L} / L\right)
$$

