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(Lattice) QCD and the weak interaction

New Physics effects expected in the quark flavour sector, because most
extensions of the Standard Model contain
O new CP-violating phases
O new quark flavour-changing interactions
o il .
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Changes of quark flavour inside a hadron are weak interaction processes
— Due to confinement, QCD corrections to the decay rate are significant
— Non-perturbative QCD effects typically absorbed into hadronic matrix

elements such as decay constants, form factors and bag parameters

= A task for lattice QCD



The CKM matrix . . .

. encodes the mixing between quark flavours under weak interactions
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@ Empirically, matrix elements are largest among the diagonal

— hierarchy gets explicit by expansion in powers of |V s| = A ~ 0.22
@ d unitarity relations such as V,qV, + VgV, + ViaVy, =0

— Vckm represented as unitarity triangle in the complex (p, 11)—plane
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Impact of LQCD on precision heavy flavour physics

Heavy quark sector constrains UT: angles & sides are related to hadronic

: ff ; . i
matrix elements of J{V(Veeaﬂ(, corresponding to mesonic decays/transitions

2
Amg o Py B, aVg? e = £ Vep £ Feu/Bo, fFey/Be,
o J large number of experimental data from heavy flavour-factories

(CLEO, BaBar, Belle, LHCb, ...)
o Inputs of theory and predominantly LQCD computations needed to
» interpret results of experimental measurements
» determine/pin down heavy quark masses & CKM matrix elements
» overconstrain unitarity relations < unveiling New Physics effects

Vud Vs Vb "Gold-plated” lattice processes
¢ K —¢ B { . -
TR - Ty o 1 hadron in the initial state,
Komty hadron in the final
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Impact of LQCD on precision heavy flavour physics

O Constrain apex (p, 1) as precisely as
possible by independent processes
0 Theory & Exp. sufficiently precise
= New Physics = inconsistent (p, 1)
O LQCD inputs from the heavy sector:
» B-meson decays & mixing: Fg, Bg
» B — D decays:

I F(1), G(1) = Vel
IR PO TITI L > semi- Ieptonic B-meson decays:
-1.0 -0.5 0.0 07p5 1.0 15 2.0 f+ ( ) |Vub|

What is the required precision for key contributions to phenomenology ?
o Experiments reach few-% level, even < 5% = theory error dominates
Amys: < 1% [PDG,CDF], B(D(s) — wv): < 4% [CLEO-c], B(B— D*{v): 1.5% [HFAG]
o Lattice calculations with an accuracy of O(5%) or better required
— incl. all systematics (unquenching, extrapolations, renormalization, ...)
O Verification/Agreement of results using different formulations crucial!



Light sea quark configurations in use

[in current studies of heavy quark physics]
Quenched approximation (N = 0)

o No dynamical fermions, not suitable for phenomenology

o Sitill useful test laboratory, e.g., to understand methodologies etc.
Two-flavour QCD (Nf = 2)

o NP’ly O(a) improved Wilson (= clover) action

» algorithmic progress (e.g., "Hasenbusch trick” and M. Lischer’s
DD-HMC) render simulations competitive in the chiral regime

» ALPHA € Coordinated Lattice Simulations = European team effort
» Regensburg (QCDSF)
O Twisted mass Wilson (with tree-level Symanzik-improved glue)

» O(a) improved by tuning to maximal twist; keep an exact x-symmetry
at the price of breaking part of the flavour symmetries and parity

» ETMC
O Stout-smeared, chirally improved (with 1-loop improved LW glue)

» BGR



Light sea quark configurations in use

[in current studies of heavy quark physics]

Three-flavour QCD (N =2 + 1)

o MILC ensembles of AsqTad-improved staggered quarks
(with LW-improved glue)

» computationally "cheap”, permit simulations within the chiral regime

1
» debated rooting prescription [det® (D +m)]* = det™ (v, D, +m),
but effects seem to disappear in the CL; results agree with experiment

» MILC & FNAL, HPQCD
O Domain wall fermions (with lwasaki gauge action)

» chirality preserving (realized as 5th dim. Ly = 00)
» RBC & UKQCD

o NP’ly O(a) improved Wilson (with lwasaki gauge action)

» PACS-CS
Four-flavour QCD (N =2+ 1+1)
— in progress by ETMC & planned/started by other groups [Talk by G. Herzoida]

Light valence quarks usually discretized in the same way as the sea



Challenge of LHQP: The m ulti-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range < physical length scales
momentum cutoff > physical mass scales: Acut ~ al> Ei, m;

This is a challenge in QCD, which has many physical scales:
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hierarchy of disparate physical scales to be covered:
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Challenge of LHQP: The multi-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio

interaction range < physical length scales
momentum cutoff > physical mass scales: Acut ~ al> Ei, m;

This is a challenge in QCD, which has many physical scales:

l/fm
100 10 0.01 0.001
m q
L L 1
0.001 0.01 0.1 1 10 100
u/GeV

= Difficult to satisfy simultaneously, clever technologies are required
» charm just doable, but lattice artefacts may be substantial (see later)

» given the today’s computing resources, it seems impossible to work
directly with relativistic b-quarks (i.e. resolving its propagation) on the
currently simulated lattices

» the b-quark scale (m,/m. ~ 4) has to be separated from the others in
a theoretically sound way before simulating the theory



Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of
strong lattice artefacts : ame < 1 amp, > 1

~

Heavy quarks introduced as valence quarks = "Partially quenched” setting



Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of
strong lattice artefacts : ame S1 amp > 1
Heavy quarks introduced as valence quarks = "Partially quenched” setting

Relativistic formulations — mainly for D-physics applications

@ Wilson-like quarks: clover or TM, am. < 1/2 < 1 desirable
» O[(amc)?] discretization effects ALPHA, ETMC

@ Fermilab approach: relativistic clover action with HQET interpretation
[El-Khadra, Kronfeld & Mackenzie, 1997 ]
» O[as(Aqcn/mq), (Aqep/mq)?] errors
» variants = RHQ actions — NP’ly tuned parameters, O [(ap)z} errors
[Aoki et al., 2001; Christ et al., 2006 ]

» adopted for charm & beauty FNAL & MILC, PACS-CS, RBC & UKQCD

@ HISQ: goes beyond O(a?) tree-level improvement of AsqTad
» perturbative Symanzik-improvement/smearing of the gauge fields
= no tree-level O[(amq)*, as(amq)?] errors to leading order in v/c
» 1-loop taste-changing interactions reduced by a factor ~ 3
» now also being tried towards the bottom region HPQCDJ




Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of
strong lattice artefacts : ame <1 amp, > 1
Heavy quarks introduced as valence quarks = "Partially quenched” setting

Non-relativistic / effective field theory strategies — B-physics applications
@ NRQCD: discretized non-relativistic expansion of the continuum Lp
» improved through O(1/mg, a?) and leading relativistic O(1/m3)
» O[al'/(amgq)] divergences HPQCD
@ Static approximation = Leading-order HQET (ETMC)
» HQET-guided extrapolations of fully relativistic simulations in the
charm regime, turning into interpolations if the static limit is known

» also in conjunction with finite-volume /finite-size scaling techniques
> INFN-TOV, ALPHA, ETMC

@ HQET for the b-quark: systematic expansion in Aqcp/my

» NP fine-tuning of parameters to O(1/m,;) & impr. statistical precision

» connect different volumes iteratively with "step scaling functions”
> ALPHA |




Summary of heavy quark physics calculations

group alfm] m™ [MeV] q Q
Nf=2
ETMC 0.05, 0.065, 0.085, 0.10 270 ™ static/ T™M
Regensburg 0.08 170 clover clover
ALPHA 0.08, 0.07, 0.05 250 clover static + 1/m
Ni=2+1
FNAL & MILC | 0.09, 0.12, 0.15 230 AsqTad Fermilab
FNAL & MILC II 0.06, 0.09, 0.12, 0.15 230 AsqTad Fermilab
HPQCD | 0.09, 0.12 260 AsqTad NRQCD
HPQCD I 0.09, 0.12, 0.15 320 HISQ NRQCD
HPQCD Il 0.045, 0.06, 0.09, ... 320 HISQ HISQ
RBC & UKQCD 0.08, 0.11 330 (300) DW static/ RHQ
PACS-CS 0.09 200 clover RHQ
Ne=2+1+1
ETMC 0.06, 0.079, 0.09 270 (230) ™ Osterw.-Seiler

static = smeared static (HYP, APE) [Update of C. Aubin’s table @ Lattice 2009]



Outline

O Heavy quark masses from Lattice QCD
O Cutoff effects in the charm sector
O ¢- and b-quark masses from current-current correlators
9 m,y, via scaling laws in the heavy quark limit

O Calculations of hadronic weak matrix elements
O D-meson decay constants
© B-meson decay constants
O Semi-leptonic decay form factors
O B-meson mixing parameters
o B* — B coupling
O Non-perturbative HQET in two-flavour QCD
O Non-perturbative formulation of HQET
O Strategy to determine HQET parameters at O(1/m)
O First physical results in the two-flavour theory

 Conclusions & Outlook

I will focus on a selection of most recent progress/results, however, not
without some personal "bias”. Therefore, sorry for omissions . . .



Heavy quark masses from Lattice QCD

» Cutoff effects in the charm sector
» c- and b-quark masses from current-current correlators
» my via scaling laws in the heavy quark limit



Cutoff effects in the charm sector (  Nf = 0)

H. & Jiittner, JHEP0905(2009)101
Calculation of the charm quark’s mass [Rolf & Sint, 2002]
O Physics input: bare charm mass in Lqcp s.th. mp_/Fk = experiment
O Additional complication in the charm sector:
» O(amg) cutoff effects become relevant, e.g., in the definition

Mc - ZM [1 + (bA - bP) amq,cJ me = ZM ZEAZP My,c (1 + bm amq,c)

— O(amg,) removed NP'ly [ ALBHA 2001 (Nf = 0) & 2010 (N; = 2)]

> N =0,70=05fm: Mc=1.60(3)GeV

o e T
£ 1 = WM = 1268(24) MeV
< E x B ]
) T e R Y 3 Y SpLV R
- : 2 E s.th. beauty is not yet accomodated
377\\ Il ‘ L1111l ‘ L1111l ‘ L1111l ‘ L1l \ﬁ\ \% — for b'quarks, Continuum Iimit a — 0
0.01 0.02 0.03

(a/ro)? can’t be controlled in this way

large volume, a ~ (0.09 — 0.03) fm = effective field theory strategies needed



Cutoff effects in the charm sector (  Nf = 0)

Warning from Fp_: Lattice artefacts may be large for charm physics

o H. & Jiittner, 2008, co by ALPHA
H. & Juttner, 2008, cp by LANL
Ali-Khan et al., 2007

0.

]

@ High-precision computationin V =13 x T,
L~2fm, T=2L, a~ (0.09—0.03)fm (!)

0 B2 mp, = Za2L3[(0|AS| DS (p =0))]?

0.6!

a

T T[T T

Elovon bl benna by

g
€% it ; from ground state dominance of SF CFs
;
osg- | @ Controlling the continuum limit of charmed
Y ST observables demands scaling study down
a0 to very fine lattice spacings (a < 0.07 fm)

Lesson from N¢ > 0:
Symanzik programme works for charm, but a < 0.08 fm seems mandatory

However, small lattice spacings are challenging:
Rapid slowing down of the gauge fields’ topological modes with
decreasing lattice spacings [Talks by M. Liischer; F. Virotta ]




mc&mb

Parametric inputs to many SM and Beyond SM calculations

08
0.7

me
O LQCD can contribute to further reduce the error budget for the rare
decay branching ratio B(K™ — 7ttv¥) by precisely computing m.

mp
o Tensions between inclusive & exclusive determinations of | V|, |Vup|

0 CLEO (1985)/1.28
v BABAR (2009)
BABAR (2009) (INCL. ISR)

i3

1}

Updated sum rule determination based on new
4-loop results & new BABAR data for b-quark
production [ Chetyrkin et al., PRD80(2009)074010]

— By equating theoretically calculated and
experimentally measured moments:

6 107 108 109 1T
Vs (Gev)

11 112

1
gQ pert d n
_1 Qi 2
s mQ(u)—z[ v Mno<<dq2> Mq(q?)

q2=0

S(T.) = 1279(13) MeV, WS (T,) = 4163(16) MeV; consistent with NP methods?

[R.vande Water @ Lattice 2009]

o Extraction of / UT constraint via |V,p| from inclusive decays extremely
sensitive to the input value for my
= accurate unquenched determinations required



m. & my, from current-current correlators

HPQCD, McNeile et al., arXiv:1004.4285

In the spirit of the previous method, heavy quark masses are extracted via
dispersion relations by comparing perturbative zero-momentum moments
of current-current correlators (available to 4-loop by the Karlsruhe group)
with lattice data in place of experimental data for o(e™ e~ — hadrons)

= 6Z ampn)?(01j5(x,1)j5(0,0)[0)  js = Ppysn

is finite and unrenormalized as a — 0 (PCAC), and g,, from continuum PT:

Gn = Z(t/a}"G(t) _ QTI(OCI\/TS(H)vU/mh) + O((amh)m) n>4

- (amp ()"

Reduced moments to suppress lattice artefacts and tuning errors in amg:

(0) _ . ..
Ga/Gy forn =4 continuum quantities,
R, = am 1/(n—4) d
" —Tb (GMGE{”) forn > 6 mio® m{o®) as input
2amgp



m. & my, from current-current correlators

Reduced moments: HPQCD, McNeile et al., arXiv:1004.4285

(0) _ . ;.
G4/Gy forn=4 continuum quantities,
am 1/(n—4) -

A(Gn/GEPO forn>6

~

" m!T® ml®) as input

2amgp

New simulation/Analysis features compared to 2008:

O MILC Nf = 2 4+ 1 sea, HISQ for valence c- and very close-to b-quarks
O Finer lattice resolutions: a = (0.06, 0.045) fm
o New 3rd order PT for Ry, variety of masses around m.
O Sophisticated fitting techniques
» simultaneous constrained, Bayesian fits to all parameter sets

(specified by a, amgy,), with priors for a large # of parameters
» applied to the ansatz for the cutoff effects modelled according to

Rn(p,mnh,a,Nam) = Rﬁmt/[l-ﬁ- Z Z c! (amnh>2i (Ti/\ )J:|
Th

i=1 j=0

» 0.3 < amy, /2 S 1.1 &tiny statistical errors
= decent fits only when N, > 10 — 20 & restricting am,, < 1.95!



m. & m; from current-current correlators

HPQCD, McNeile et al., arXiv:1004.4285

é ] T T T T T

§ 1 1.6 [ i

g . =

~ s 14f

2 ] 5

c§ 1.5}F . = 3mp(pn) | m:

= 14} R 1.2

£ 13f ]

Z L | | ‘ ‘ . i L I I

<16 Fwo/mo | 0.0 0.2 0.4

§ 1.5}F = 3my(pn) | a2 (Ge\/*z)

~ 14} i .

£ 13} . Cutoff effects decrease with n, but n should
e 4 6 8 T be small enough for PT to be applicable

my, (GeV)
» One presumes that 1.) the Symanzik expansion is a convergent expansion
and 2.) that it is still useful up to amy =~ 1 — too optimistic ?

» As final results, incl. all systematics, HPQCD quotes:

MM (T, Nf = 4) = 1.273(6) GeV , 7" (M, N =5) = 4.164(23) GeV



m,, via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049
Determine B-physics parameters by extrapolating ratios of heavy-light
meson masses & decay constants obtained around m. to the my—region,
employing scaling laws in the heavy-quark limit

O For many years:
Conventional extrapolations of charm data to the bottom-scale based

on heavy quark scaling laws



m,, via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049

Determine B-physics parameters by extrapolating ratios of heavy-light
meson masses & decay constants obtained around m. to the my—region,
employing scaling laws in the heavy-quark limit
O For many years:
Conventional extrapolations of charm data to the bottom-scale based
on heavy quark scaling laws
O New method proposed:
1.) Interpolation of proper ratios between the charm region and their
(known) static limits to a sequence of reference quark masses niff)

towards my,
2.) Mapping of simulation data of observables in the charm region to the
B-scale m(BEXp], by multiplying them with these ratios
1 On(1/x, M) Z(InAx) _ x(m=1)
— XZZlﬂﬂh,AZZ
On(1/Ax, M) Z(Inx) ()

QCD __ HQET
hl - Z@hl

>1

Y(x, A, my) ~ A~

where further logarithmic terms must be included and O
= limy_oY(x, A, m) = 1 Z : PT’ly known



m,, via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049

1.00 . - - T T iy~ 1.23 Gev
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Results for Ny = 2 maximally twisted mass Wilson fermions:
mMS (M) = 4.63(27)GeV  Fg =194(16)MeV  Fg_ = 235(12) MeV
» O, = my : heavy-light meson mass — computation of my
On = Fni: heavy-light decay constant — computation of Fg, Fg,

» Error budget: ~ 50% from Oy, (11_1}(]1’), ~ 50% from Y-ratios

» Authors expect this method to have smaller errors than free extrapolations
with heavy quark scaling laws



mc&mb

Further work to determine heavy quark masses reported at the conference

o Preliminary N¢ = 2 result by ETMC: [Talk by F. Sanfilippo]

me S(Me) = 1.275(35) GeV RI-MOM renormalization & continuum limit

O The c-quark mass from charm current-current correlators in TM QCD
[ETMC, talk by M. Petschlies]

O The b-quark mass from lattice NRQCD (using PT and simulation data)
[Poster by C. Monahan]



Calculations of hadronic weak matrix elements

D-meson decay constants
B-meson decay constants

>
>
» Semi-leptonic decay form factors
» B-meson mixing parameters

>

B* — Bt coupling



Fp & Fp, — Test of LQCD techniques

G2m3 mps m2 \?
+ +5) — . e 2 2 + _ ot ot
B(Ds —{ ’V) = - <l—m2D+> FDsvaS‘ { =K., T
O Measuring the branching ratio, experiment yields FSS\VCSF s.th.
assuming CKM unitarity | Vgl = |Ves| + O(A*), one can compare
Fp. with (0]5yuysc|Ds(p)) = iFp.p, from LQCD
O Fp < V.4, but Fp_ needs no chiral extrapolation in the valence sector

Fp [MeV] 5, [MeV] Among the possible explana-
T I I;I T T I T T T T . .
b - tions for the discrepancy be-
e CLEO-"'08/°09  tween experiment and lattice:
e Exp.—2009 . ]
N=2+1 » Experimental issues ?
o HPQCD—-2007 .
. FNAQL&M][LCJOB > S.ystematlc effe.ct, e.g.,
e FNAL&MILC—"09 discret. error missed ?
R Ne=etl-comb. o rension = Hint of new
i ) ETMC—-2009 physics in the flavour

?
200 250 300 sector



Fp & Fp, — The " Fp_ puzzle” revisited

Discrepancy rose to 3.8 o in 2007 w.r.t. HPQCD's result, using N =2 +1
HISQ valence quarks on rooted staggered MILC sea
(based on a = 0.15,0.12, 0.09 fm, but consistent with adding a =~ 0.06, 0.045 fm)

Fp = 207(4) MeV Fp, = 241(3) MeV combined x & continuum extrap.

Tracing the discrepancy’s history

[compilation by A. Kronfeld, arXiv:0912.0543 ]

new meas. by CLEO 01/09: —0.80

FNAL & MILC'’s update 2009 after
re-analysis of r1F: —0.130
HFAG's interpretation of the BaBar
measurement. —0.670

new meas. by CLEO 10/09: +0.1c
The tension moved down to 2.30




Fp & Fp, — The " Fp_ puzzle” revisited

Discrepancy rose to 3.8 o in 2007 w.r.t. HPQCD's result, using N =2 +1
HISQ valence quarks on rooted staggered MILC sea
(based on a = 0.15,0.12, 0.09 fm, but consistent with adding a =~ 0.06, 0.045 fm)

Fp = 207(4) MeV Fp, = 241(3) MeV combined x & continuum extrap.

Influence of the lattice scale setting by 77 :
2Fr) =1  Fr) =dV/dr 1 =0.321(5)fm from ¥ 25 — 1S splitting
(uncertainty on r; dominates the error budget of Fp,)

New scale determination, combining r;—results from Y, Ds mass splittings
(via HISQ) and F,,_ with MILC’s r1/a [HPQCD, Davies et al, PRD81(2010)034506 |

r1 = 0.3133(23)fm = 1.6 0 discrepancy with CLEO-2009

= Given the high statistical accuracy of the calculations, it's even more
important to carefully assess the overall error incl. all systematics



Fp & Fp, — The " Fp_ puzzle” revisited

Discrepancy rose to 3.8 o in 2007 w.r.t. HPQCD's result, using N =2+ 1
HISQ valence quarks on rooted staggered MILC sea
(based on a = 0.15,0.12, 0.09 fm, but consistent with adding a =~ 0.06, 0.045 fm)

Fp = 207(4) MeV Fp, = 241(3) MeV combined x & continuum extrap.

Preliminary Nf =2+ 1+ 1 results by ETMC: [Talk by C. Urbach]

Fo =204(3)MeV ~ Fp, =251(3)MeV  Fp_/Fp = 1.230(6)

» Wilson twisted mass fermions at maximal twist; a = (0.079, 0.060) fm
» Mixed action approach: Osterwalder-Seiler quarks in the valence sector

» Extrapolation of Fp_,/mp, to the physical point employing SU(2) HMxPT,
where terms proportional to a*mg ,1/mp, are included

» Error is purely statistical, systematics not yet accounted for



Fp & Fp, — The " Fp_ puzzle” revisited

Discrepancy rose to 3.8 o in 2007 w.r.t. HPQCD's result, using N =2 +1
HISQ valence quarks on rooted staggered MILC sea
(based on a = 0.15,0.12, 0.09 fm, but consistent with adding a =~ 0.06, 0.045 fm)

Fp = 207(4) MeV Fp, = 241(3) MeV combined x & continuum extrap.

Update of Ny =2 + 1 results by FNAL & MILC: [ Talk by J. Simone]
Fp = 220(8)(5) MeV Fp, = 261(8)(5) MeV Fp,/Fp = 1.19(1)(2)

» First error from statistics & discretization, where extrapolation function incl.
terms (with priors on coefficients) modelling heavy & light cutoff effects

» Second error = combined other systematic error sources (taken in quadrature)

D system decay constants [MeV]

HPQCD" - 1]
FNALMILG - [ | I
Belle(fDs) - [ |

| | 1 | |
200 220 240 260 280
f



Fp & Fp, — The " Fp_ puzzle” revisited

Update of N =2 + 1 results by HPQCD: [Talk by E. Follana]

Fp, = 247(2) MeV

Some simulation/analysis features:

0.28

HPQCD 2010 preliminary » Finer lattices: a = (0.06, 0.045) fm
1 » Accounts for scale re-determination

» Bayesian simultaneous fits
» Further new HISQ formalism studies:
o hyperfine splitting
o quark mass ratios ™. /Mg < s
o HISQ with m;, — mp — FB(S)
o heavy-light current-current CFs

023 s s s s
0 0.005 0.01 0.015 0.02 0.025

a2/ fm? [Talk by J. Koponen]

"Puzzle” seems to disappear:
No conclusive evidence for New Physics in the charm quark sector yet, but
the D) leptonic decays will continue to help constraining SM extensions



Fg & Fg,

o Fpg b

> BB~ — T V) x [Vip? F3 w
—_ ~ leptons
experiment lattice
. B

Process is sensitive probe of
charged Higgs boson effects

u

» Relevant for CKM analysis
& BSM effects in Bs — ptu~
(decay will be measured at LHCb)



Fg & Fg,

o Fpg b

> BB~ — T V) x [Vip? F3 w
—_ ~ leptons
experiment lattice B

» Process is sensitive probe of

charged Higgs boson effects u
Q FBS
» Relevant for CKM analysis Direct SM meas. by Belle '06:
& BSM effects in B; — putp~ Fg = 229+31(stat)+34(syst)
(decay will be measured at LHCb) — few-% at super-B factories ?
Fg [MeV]  Fy [MeV] 1.90 deviation of exp. determ.
T T T I T T I T T T T H -
A UTfit —non—1latt. fr.om LQCD (u5|.ng V| exclu
N=2+1 sive from the lattice)
—e—i e FNAL&MILC—-"08
—e—+——e—— |HPQCD-2005
—e—i E—ei HPQCD—-2009—1 Goal of lattice computations:
° * HPQCD—2009-1 0(10%)—0(3%) errors; better
N,=2
. ey FTMC—2009-—1  control of a— and mass effects,
— ETMC—-2009—I NP renormalization

200 250 300



Fg & Fg,

Update of Ny =2+ 1 results by FNAL & MILC: [Talk by J. Simone]
Fg = 212(6)(6) MeV Fg, = 256(6)(6) MeV Fg,/Fg = 1.21(1)(2)

» a = (0.09,0.12,0.15) fm MILC sea; partially quenched staggered xPT fits
» Combination of perturbative & NP renormalization

» First error from statistics & discretization, where extrapolation function incl.
terms (with priors on coefficients) modelling heavy & light cutoff effects

» Second error = combined other systematic error sources (taken in quadrature)

B system decay constants [MeV]

FNAL/MILC - - -

1 1 1
200 250 300
f

» Experimental branching ratios & (excl. & incl.) average for | V| to extract Fg,
[Rosner & Stone, arXiv:1002.1655]



D-meson semi-leptonic decay form factors

o Independent determination of [V, |Veql; holds [Vygl = [Ves| actually ?

» |V consistent with CKM unitarity
requirement at the O(10%) level,
but this is not stringent enough for
precision CKM physics

O Differential rate for the decay
D — 7mtlv, for massless leptons
2

2
% - 19257;“% [(m3 +m% — q2)2 —4m3m?]

3
2

[f(a®)P [Veal?

O Thus, either
» [eP) & LOCD — [V
or
» [(exP) & CKM unitarity < test of LQCD



D-meson semi-leptonic decay form factors

Veql; holds [V,q] &~ V| actually ?

0 Independent determination of |V,

» |V consistent with CKM unitarity
requirement at the O(10%) level,
but this is not stringent enough for
precision CKM physics

O Differential rate for the decay
D — 7mtlv, for massless leptons

r G2 2 3
& = Ty (M3 +m2 — %) —4mBm2]? [ (a7) Ve

O Thus, either
» [eP) & LOCD — [V
or
» [(exP) & CKM unitarity < test of LQCD
o Also of interest w.r.t. the Fp_ tension: Not obvious how to reconcile it
with BSM physics, since SM leptonic Dy decay occurs at tree-level,
though models with a charged Higgs or leptoquark could do but would
lead to signals in Ds — K{v, decays [ Dobrescu & Kronfeld, Kronfeld, 2008 ]



D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)
D — K form factor with HISQ charm & light quarks Talk by H.Na

» Nf=2+1 a=(0.09,0.12) fm MILC sea, HISQ for valence light & c-quarks
= fo(qg?), f, (0) from scalar current via PCVC, without operator matching:

me — m,
g" (V) Z = (me —mg) (S™)  fo(q?) = ———2(S) , £4(0) = fo(0)
mMp — My
» Bayesian fits of 3- & 2-pt. functions and of chiral & continuum extrapolations
D-K . D-K .
fy : coarse lattice fy : fine lattice

ur T T T T T T ™ ar

I I T I T I
chiral/conti. extrapolation |4
'm0.0124 ensemble
'mO0.0062 ensemble

2
foaq =0

chiral/conti. extrapolation |1
m0.02 ensemble 1
m0.01 ensemble r
m0.005 ensemble = 1=

2_
foaq =0

o

e 000

1.6% error ] [ 1.6% error

o7l L 1y O I S O S R
02 04 0.6 08 1 12 0.2 04 06 0.8 1 12

£’ [Gev] : E’ [Gev] :

Note: At EZ ~ 1GeV? (q2 = 0) applicability of xPT appears questionable




D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)
D — K form factor with HISQ charm & light quarks Talk by H.Na

» Nf=2+1 a=(0.09,0.12) fm MILC sea, HISQ for valence light & c-quarks

= fo(qg?), f, (0) from scalar current via PCVC, without operator matching:
me —m
g (V) Z = (mc — mg) (S™) fo(q®) = ————(S) , £1(0) = fo(0)
mMp — My
Preliminary result with full error budget:

f,(q%> =0) =0.753(12)(10) [(stat)(syst)] [Ves| = 0.954(10)(20) [(exp)(lat)]

HPQCD (2010) [preliminary]

. HPQCD (2010) [preliminary] HH — [ IV = 0.954 (10)(20) = i
Other theory | ; ;

[ — [ PDG: direct estimation i
Fermilab/MIL C (2005) F i , - Semi-leptonic decay: V| = 0.99 (1)(10) g

L Sum Rules (2009) B L Leptonic decay: V| = 1.07 (8) 5 i

Average: |V | =1.04 (6)

- —e— —
L Experiment + CKM Unitarity _
CLEO-c (2009, 818 pb™) . i r PDG: CKM Unitarity ]
BaBar (2007+update) L IVJ = 097334 (23) -
r CLEO-c (2009, 281pb™) o b
Belle (2006) Lo r ]
P I N R [ P Y S B Y SO N SR
02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 1 11

f(q™=0) Vo



D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)

) . Talk by H. Na
D — K form factor with HISQ charm & light quarks
Unitarity check of 2nd row ,(0)/Fo,
[ HPQCD (2010) [preliminary] i j HPQCD (2010) [preliminary] ]
L 0.965 (42) e - [ 3.000 (53) —a— =
r PDG N r HFAG + PDG 7
1.136 (125) 1 b 2.897 (75)
L | L | L | L L | L | | . | . | L | \ |
02 04 06 0.8 1 12 14 24 26 28 3 32
N + IV + IV f,(0)ffp, [GeV']

Future plans:
» D — 7t FF using the same method
» D semi-leptonic decay via the vector current with fully NP operator matching



D-meson semi-leptonic decay form factors

Status of D — 7 for N¢ =2+ 1 from FNAL & MILC: [Talk by E. Gamiz]
» a~= (0.09,0.12) fm MILC ensembles, quadrupled statistics, Fermilab heavy quarks
» Overall normalization due to Z;, = p;,, [Zv,,Zv,,]*/? "blinded”

» Combined chiral (excluding v/2 E/(47F,) > 1) & continuum extrapolation
>

Comparison of the shape of the form factor to CLEO-c
(— f4(q?)/f,(0.15 GeV?) to remove blinding factor from f_. and |V.4| from CLEO)

= Statistical error (~ 5% for f(0.15 GeV?) ) and agreement are much better,
but analysis of svstematics has to be awaited

Consistency check between lattice and experiment for D -> 1t
,(¢") rescaled by its value at ¢ = 0.15 GeV’
6
———

b [— 5 ensembles of full QCD lattice data (statistical crrors only)
S | e CLEO-c, PRD (2009), arXiv:0906.2983 B

146 11,0.15)




D-meson semi-leptonic decay form factors

Preliminary N¢ = 2 results by ETMC: [Talk by S.DiVita]

>
>
>

>

a ~ (0.1,0.079,0.063) fm, m, = (500 — 270) MeV, controlled finite-size effects
Ratios of 3- and 2-point functions s.th. Z—factors cancel

Only slight interpolation necessary to bring the simulated c- and s-quark
masses to their physical values before any chiral extrapolation

Extrapolation to the physical point by combined fits to HMxPT formulae,
down to q2 = 0, adding allowed LO O(a?) discretization effects to them

Good agreement of LQCD with exp. determinations in common a’-ranae

IS
PRELIMINARY

— 1(q) ETMC N,=2 (HMCHPT, continuum)
1,(¢") ETMC N;=2 (HMChPT, continuum)

m f,(q") CLEO-c D%>1i [PRD 80 032005 (2009)]

A £ (q) CLEO-¢ D"->1’ [PRD 80 032005 (2009)]

Preliminary: 2k 27 O % ]

[ m,~480 MeV - 270 MeV

fD_)T[(O) = 0-66(6)Stat 15 a-0.100fm-0.063fm
fDHK(O) = 0-76(4)stat




D-meson semi-leptonic decay form factors

Preliminary N¢ = 2 results by ETMC: [Talk by S.DiVita]

» a~(0.1,0.079,0.063) fm, m, = (500 — 270) MeV, controlled finite-size effects
» Ratios of 3- and 2-point functions s.th. Z—factors cancel

» Only slight interpolation necessary to bring the simulated c- and s-quark
masses to their physical values before any chiral extrapolation

» Extrapolation to the physical point by combined fits to HMxPT formulae,
down to q2 = 0, adding allowed LO O(a?) discretization effects to them
= Good aareement of LOCD with exp. determinations in common a?-ranae

35— 35— — T
L PRELIMINARY | PRELIMINARY |
s | fﬂ(q?) ETMC N=2 (Partialy Q. HMChPT, continuum) } | —_ lg(qz) ETMC N,=2 (Partially Q. HMChPT, continuum) }
L ,(of) ETMC N,=2 (Partially Q. HMCHPT, continuum) i 3r (o) ETMC N,=2 (Partially Q. HMCHPT, continuum) L
sl | ® f,(¢f) CLEO-c D°->K [PRD 80 032005 (2009)] P W f,(q)/f(0) BaBar D™>K  [PRD 76 052005 (2007)] i
. i . i
| | A f,a)CLEOcD">K° [PRD 80 032005 (2009)] i 251 ,(oP)/f(0) FOCUS D™>K” [PL B607 233 (2005)] =
2 ! 2 !
R v Pl e [
L m,_~480MeV - 270 Mev - 20 m_ ~480MeV - 270 MeV [P
15| @~0.100fm-0.063fm 1 | a-~0100fm-0063fm 2 g’ |
1 ' |
! .|
J
i
i
[
B |
|
i
|
1

P I S S Ty [ T I
0'50 . . . X

q’ (Gev) o (Gev)



B-meson semi-leptonic decay form factors

Status of B — D*{v, for Ny =2+ 1 from FNAL & MILC:

leptons

[Talk by A. Kronfeld ]

>

>

Determination of | V|,

which normalizes the whole UT

~ 2.30 tension between inclusive
and exclusive [V, (latter relying on
B — D*{v, from FNAL & MILC 2008)

Zero recoil = just F(1) = ha(1)

Double ratios of matrix elements:
Cancellations of stat. errors and

renormalization, left perturbative
matching uncertainty small

a = (0.06 — 0.15) fm,
guadrupled statistics

FpiinaF(1) =
0.8949(51)(88)(72)(93)(50)(30)
(errors due to statistics, gp«px, chiral

extrapolation, HQ discretization errors,

k—tuning, perturbative matching)

h, (@

0.98

0.96

0.94

0.92

0.9

0.88

0.86

ledof =89/12,CL=0.72

ﬁ %§§ . f:

medium coarse (0.15 fm)
coarse (0.12 fm) —
fine (0.09 fm)

superfine (0.06 fm)

>oOoOo

1 1
0.01

| 1
0.02



B-meson mixing parameters

Apex of the UT triangle constrained by b b
ratio of meson oscillation frequencies
— 4 5 5 _
(M[0am=2|M) = gmMFMBM B% B%
(0[by,ysq|Bq) = ipu.Fe,,a=d,s q q
Amg o FE Bg, [ViaVi 2
Am, F2.Be, Vi 2 Vsl
x - = § & SU(3) breaking ratio
Amy F2 Bg, [Vidl® [Vial?
O If UT constraints from «, v, |V,p| are omitted, a (2 — 3)o tension between
constraints from ex, Amg/Amy, sin(2p) is observed [ Lunghi & Soni, 2008]
O Degree of tension very sensitive to | V| [ Laiho, Van De Water & Lunghi, 2009]
— leave one input as free parameter & make prediction based on others

[Vebexci: )(Z/dof =61 - -

\a
|Veblinet: ledof =26
CL.= 02% CL.=

7.4%




B-meson mixing parameters

RBC & UKQCD, Albertus et al., arXiv:1001.2023
Feasibility study using N¢ =2+ 1 DW sea Talk by Y. Aoki
and (APE & HYP) smeared static quarks
» a~ 0.11fm, m, down to ~ 430 MeV
» O(aspa) improvement for the heavy-light decay constants
» NLO SU(2) HMxPT to extrapolate to the physical masses, which converges
more rapidly if light valence and sea quark masses are sufficiently small

g, 14+3¢35. (3 o, (M} 2Bmy
= Roql+ ——=BBT () m2in( L)+ -
Dp, (47tf) 4 A5 (47tf)
|a APE i, fm, - € = 1.142(72), x/dof = 0.3 4 APE: ®p, /D5, = 1.165(88), x*/dof = 0.8
130 | mHYP: g, - € = 1L144(54), x*/dof = 2.0 1.30  m HYP: &, /0y, = 1.153(47), x*/dof = 1.8
I
o 1251 |
.\ a;
Siz0
]
. 1.15
&Q
= 1104
1.05 i
1.00- |
i
0 0.01 0.02 0.03 0.04

a(my + myes)



B-meson mixing parameters

RBC & UKQCD, Albertus et al., arXiv:1001.2023

Feasibility study using Nf =2+ 1 DW sea Talk by Y. Acki

and (APE & HYP) smeared static quarks
» a~0.11fm, m, down to ~ 430 MeV
» O(aspa) improvement for the heavy-light decay constants

fe./ fn, €
| 4 RBC/UKQCD A
beol o HPQCD [14] ol

FNAL-MILC [15]

1.0 11 12 13 14 1.0 11 1.2 13 14

» Results including statistical and systematic uncertainties:

Fe./Fs, = 1.15(12) & :FBS\/ﬁgs/FBd\/ggd — 1.13(12)

(chiral extrapolation and discretization errors dominate; gg«gr — 0(3%))

» Extension to lighter d-quarks and larger volumes 243 (a ~ 0.11 fm) and 323
(a ~ 0.08 fm) under way



B-meson mixing parameters

Related work in progress reported at the conference

O B-physics study with Ny =2 4+ 1 DW sea quarks and NP’ly tuned
RHQ action for the heavy quarks by RBC & UKQCD
[Talk by O. Witzel ]

O Computation of gg+gr with Ny =2 4+ 1 DW sea and NP’ly tuned
RHQ action for the heavy quarks by RBC & UKQCD
[Talk P. Fritzsch]

o BY— Eg mixing calculation focusing on BSM contributions
by FNAL & MILC
[Talk C. Bouchard]



JB*Bn

Matrix element for the strong decay B* — Brr:
(B(p) " (q) IB**(p")) = — gg-Br(d®) aun™(p)(2m)*S(p" —p — q)

Relevance
O Related to the coupling g of heavy-light meson xPT (HMxPT)
g o lm  gebn
mp—00,Myg—0
— the only LEC at leading order in 1/my,
0 It constrains the chiral behaviour, e.g., of Fg, Bg and the B — 7tlv,
form factor

O LSZ-reduction of the pion and PCAC links gg+g, in the static and
chiral limits to the matrix element of the light axial current:

1

= F1(0)  Fi(0) = (B(p)[A:(0)[B"(p))

gg+Br(0) =



JB*Bn

Matrix element for the strong decay B* — Br:

(B(p) 7t (a)IB*T(p")) = —gger(a®) aun™(p’)(2m)*(p" —p — q)
Selection of previous results

4 “\
e(\«\e
o HEH CLEO
0.61(1)(6)
13 (‘\\Oe
£ ]|\ o Orsay
5
% 0.67(8)(5)
\,c’(:’QL
|—e—| KRWY
J 0.36(10)
(’\\0
4 |\@ =) Orsay
£ 0.58(6)(10)
2 Q
06
ﬁg Yo KRWY
£ Neo 0.27(9)
s =
g 4 - Orsay
) N,:Z\\‘O-48(3)(ll)
& t>0.5(1) [NEWI]
A
0.2 0.4 0.6 0.8

N¢ =0 lattice
and light cone QCD sum rules results
[ compilation by Becirevic et al. @ Lattice 2005]

N¢ = 2 results:
> QStat = 0-516(5)stat(31)x(28)PT(28)a
[Ohki et al, 2008]

> g%t = 0.44(3)133]
[Betirevic et al. et al, 2009]




JB*Bn

ALPHA | Bulava, Donnellan, Simma & Sommer; talk by M. Donnellan

Callaboratio

Static calculation — lattice 3-point functions pose technical challenges . . .

o In 3-point functions C3(t,t’;q,p) = (Oq(t)O(t/)OL(OD , two time
separations t’ and t —t’ have to be made large

Cs(t,t/2;p,p) (t/2)A
e = M) + 0 (e-(v/2a8)

o 3-point function with summed insertion:
D(t;q,p) = a) Cstt’q,p)
t/

- aL D(trqvp) _ M(q,p) + O(teftAE)

VCa(t;p)Ca(t; q)

[Maiani et al., 1987

O Further computational details:
» HYP static actions to avoid exponential decay of signal-to-noise in t
» all-to-all light quark propagators (U(1) noise, full time dilution)
» Smeared light quark fields to reduce excited state contamination



JB*Bn

Quenched test: ALEHA  Bulava, Donnellan, Simma & Sommer: talk by M. Donnellan
precision, plateaux & continuum limit
No discernible a—dependence
at this 0.5% level
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JB*Bn

ALPHA

Callaboration

N¢ =2 NP’ly improved Wilson: preliminary

0.80
0.78
0.76
0.74
0.72
0.70
0.68
0.66
0.64
0.62
0.60,

Mes(t)

» B3 =053, a~0.07fm, m, ~ 250 MeV

F7 HYP2
0.6672(26)

STAT
g

o
(6]

ta

0.65

0.60

0.55

0.50

0.45

0.40

, Bulava, Donnellan, Simma & Sommer; talk by M. Donnellan

CLS
based
© P52
B-5.3

0905.3355

Il
0.0 2

0
m2 (GeV?)

[Scale setting preliminary; talk by B. Leder]

» Renormalization (NP Z,) and k. adds a ~ 0.5% error [A‘aiﬂﬁ, 2007 & 2008]

» Chiral extrapolation linear in mfr or via HMxPT formula [Fajfer & Kamenik, 2006

g = 90{1—

m2 In?(my) + comﬁ}

2



Non-perturbative HQET in two-flavour QCD

ﬂL PHA B. Blossier, J. Bulava, M. Della Morte, F |aﬂA

Collaboration M. Donnellan, P. Fritzsch, N. Garron,
J. H., G.M. von Hippel, N. Tantalo,
H. Simma, R. Sommer

» Non-perturbative formulation of HQET
» Strategy to determine HQET parameters at O(1/m)
» First physical results in the two-flavour theory

Scale, light quark masses from light sector:
F. Knechtli, B. Leder, S. Schaefer, F. Virotta
CLS

based



Non-perturbative formulation of HQET

Action: Spet(x) = a*Y_, Luqet(x) for the b-quark (zero velocity HQET)
[ Eichten, 1988; Eichten & Hill, 1990]

LheT(x) Lstat () — Wiin Okin (X) — Wepin Ospin(x)
L*stat(x) = E ( ) [DO + Mbare ]ﬂ)h(X) %(1 +'Y0)1~|)h(x) = 'll)h(X)
Okin(x) = Pp(x) D>y (x)

— kinetic energy from heavy quark’s residual motion

ospin(x) = Eh (X) o - BIJr’h(X)

— chromomagnetic interaction with the gluon field

Composite fields: axial current, related to the B-meson decay constant
Fgy/mg = (B(p =0)| Ao(0)|0), where Ag = Pyoyshp — AGIET

AOHQET(X) — ZHQET |:A8tat( )+CAQET6AStat( )
AF(x) = Py(x)voysn(x)

P,
SATH(x) = Wi(x) 3 (Vi-l-Vi)Yi”YslPh(X)



EVs = Functional integral representation at the quantum level:

(0) = % JD[@] O[] e~ (SreltShqeT) — JD[@] e —(SreltShqeT)
Instead of including the NLO term in 1/m of Lyqet in the action (as this theory
wouldn’t be renormalizable), the Fl weight is expanded in a power series in 1/m

exp{—ShqeT} =

exp {_a4Zsttat(X)}
X {1 —a*y LW(x)+ %[G4ZXL(1](X)]2 —a*y LP(x)+.. }

1 .
= (0) = ZJD[@]e—Srel—a“Zsttat(X)O {1*Q4ZXL(1)(X) + }

Important implications of this definition of HQET

o 1/m—terms appear only as insertions of local operators in CFs
= Power counting: Renormalizability at any given order in 1/m

@ < Existence of the continuum limit with universality
o Effective theory = Continuum asymptotic expansion in 1/m of QCD




Renormalization & Matching

Renormalization
o The mixing of operators of different dimension in LnyqeT induces
power divergences [Maiani, Martinelli & Sachrajda, 1992]

— Lgat : linearly dj/ergent additivE mass renormalization dm originates
from mixing of ¥, Doy, with Yy = EZEP = E52F| ot migre

c Cc
Mpare = OM+ M, dm = (20) - el/(2b0qo X {C190+C290 }

— PT: uncertainty = truncation error ~ el/(2b098) ¢ |, g2n+2 9070 o))
= Non-perturbative c(go) needed, i.e., NP renormallzauon of HQET
(resp. fixing of its parameters) required for the continuum limit to exist

o Power-law divergences even worse at the level of 1/m—corrections:

a ! — a2 (e.g., dm picks up a contribution a=?wy;, )

Matching

0 The finite parts of renormalization constants must be fixed s.th. the
effective theory describes the underlying theory, QCD

O Proper conditions for these must be imposed from QCD with finite my,



Mass dependence at leading orderin ~ 1/m

The réle of perturbative anomalous dimensions

Consider matrix elements of composite fields involving b-quarks as, e.g.,
obtained from a QCD correlation function of the heavy-light axial current

CRPx0) = ZAd®Y ,(Ao(x)(A0)(0))qcp

[@9P]? = Famg = |(B|ZaAol0) [
- X(!ii)noo[Zexp{xomeff X0) }CQCD )}

» B-meson state dominates spectral representation of C5° at large xo

» Za(go) fixed by chiral Ward identities, renormalization scale independent

In the static approximation this translates into
2 2 )
[@(P«)] :‘<B|Z5AtatA8tat|0>’ :Xglnoo[Zexp{onstat xo) }Cstat )]

» p—dependence in Za(go, apt) =1+ g3[Bo —voIn(aun)]+ O(gd)

» Better alternative: work with the RGI opertator (AZg])o



How does one get from ®grg = Z-‘Atf‘,ﬁm( BIA§[0) toFg?

Generic structure of the HQET-expansion of QCD matrix elements
® = (B|Agl|0): ®XP =TFg/mg = Cps(Mp/A) x gl +O (1/My)
—_—
conversion function RGI matrix element
< renormalization in effective theory

@ In HQET: Absence of chiral symmetry as it is met in (massless) QCD
implies a scale dependence @stat () = Z32 () (B AZ=H[0)

@ M, = scale & scheme independent (RG-invariant) b-quark mass




Choosing a convenient scale (L = m, = m(m,), g» = g(m,)), Cps can
be parametrized in terms of RG invariants A, M.:

>z

gx () match
DD = Cps (M/A) x Prgi , Cps (M/A) = exp {J dXYB(X)(X)}

. g«—0
To evaluate Cps, insert ymath(g,) “'<" —yog2 — ypatchg# — ymatchg6 4

match (

= leading large-mass behaviour via M 28| = (’?\:}S 25k N Vl,T(gg:)):
M—» 2b
Cps 00 (2b ) —Yo/(2bo) N “og(M/AHYO/QbO)
Cps perturbatively under control ? [3-loop AD by Chetyrkin & Grozin, 2003 ]

Coal s/ M)

L4k 9 Full (logarithmic) mass dependence € Cpg

13} 9 Fig. seems to indicate that the remaining
O(g®(my)) errors are relatively small
— however: a premature conclusion . . .

9 For B-Physics: Ays/Mp ~ 0.04

12 |




An application ( Nf = 0)

Interpolation between the static limit and the charm region

Della Morte, Durr, Guazzini, H., Juttner & Sommer, JHEP0802(2008)078
Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, in preparation

2.4 T T
3/2 ,RGI
fo [} ——
2271 32 12,6
5 o "B, MB, Ps —*
r 32 1/2 1
0" FpgMpg ™~/ Cpg —*—
1.8
1.6
14 ¢
12 ¢
1 .
08 |
0 0.05 0.1 0.15 0.2 0.25 0.3
1/(rg Mpg)

Looks good: under a reasonable smoothness assumption, interpolate the
mass dependence (linearly) in the inverse PS mass to the physical point:

O Fp, follows the heavy quark scaling law, no 1/(rgmps)? —effects are visible
— 1/m—expansion appears to work very well even for charm quarks
«— surprising; needs further confirmation, as the perturbative Cps is used

O Question: What is the accuracy of perturbation theory involved in this ?



Accuracy of perturbation theory in the matching

Bekavac, Grozin, Marquard, Piclum, Seidel & Steinhauser, NPB833(2010)46

From a recent 3-loop computation of y’}‘atCh, ratios of conversion functions
(such as Cpg v = Cps/Cy) are now known to 4-loop precision

= Outcome: PT is badly behaved for beauty and even worse for charm

"We find that the perturbative series for fg-/fg and fJ.. /fg+ converge very
slowly at best.” [ quote from Bekavac at al., 2010]



Accuracy of perturbation theory in the matching

Bekavac, Grozin, Marquard, Piclum, Seidel & Steinhauser, NPB833(2010)46

From a recent 3-loop computation of y?atc", ratios of conversion functions
(such as Cpg v = Cps/Cy) are now known to 4-loop precision

= Outcome: PT is badly behaved for beauty and even worse for charm

"We find that the perturbative series for fg-/fg and fJ.. /fg+ converge very

slowly at best.” [ quote from Bekavac at al., 2010]

Freedom to "optimize” the scale: [R. Sommer, private communication
g ymatch (4

p=s'm.=mm,), §=39(s 'm,) Cr(M/A)zexp{J dxyrﬁ(x)”}

» Matching below m,, i.e., expect s > 1 is better, s.th. decrease of terms in
perturbative series is improved once s 2 4

» However: «(my/4) is not small then, series unreliable again

» Effective scale is well below p = my; asymptotic convergence of PT only
improved far beyond my, where it is of limited use for B-physics

= Accuracy is hard to assess, error estimates in the literature too optimistic ?



Mass dependence in finite-volume QCD ( Nf = 2)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226
Fritzsch & H., in progress

Non-perturbative computation of the heavy quark mass dependence of
heavy-light meson observables in the continuum limit of finite-volume QCD
— Explicit pure theory tests that HQET is an effective theory of QCD

— Constraining the large-mass behaviour of QCD by the static limit

O QCD with Schrddinger Functional boundary conditions (T, L, 0)
o N¢ =2 NP’ly O(a) improved Wilson action, massless sea quarks

O Evaluation of QCD heavy-light valence quark correlation functions
with relativistic heavy quarks from charm to beyond bottom
(in SF simulations: set light PCAC masses to zero, m}’ig'ﬁtnce =m* =0)

o Renormalization [ ALEHA | 2005-2008]
» Fix §2(L;) =4.484 sith. L; = 0.5fm, L;/a =20,24,32,40, L, =21,
» Fix RGI (heavy) quark masses via its NP relation to bare parameters:

M
z=LiM =27, — (1+Dbmamg) x Limg Zn = %

m(uo)

[ Fritzsch, H. & Tantalo, arXiv:1004.3978]



Mass dependence in finite-volume QCD ( Nf = 2)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

. Fritzsch & H., in progress
The B-system in finite-volume QCD (L = L;)

» [; =0.5fm, z—values covering the b-quark down to the charm quark region

» Removal of all O((£)") effects at tree-level: O — Oimpr (a/L) = %

» Examples of continuum extrapolations (B-meson mass & decay constant):
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Mass dependence in finite-volume QCD ( Nf = 2)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

o Fritzsch & H., in progress
The B-system in finite-volume QCD (L = L;)

» Tests of HQET: validating and demonstrating the applicability of HQET

» Verification of the approach to the spin-symmetric limit:
(B-meson mass & ratio of PS to V decay constants)

1.20 _ 1k

] oos|

0.90

085
% 0.80 X Teesge

= ~3 L a

0.90 % 075
-
1070
0.10 0.15 0.20 025 0 0.05 0.10 0.15 020 025
1/z 1/z

= Large-mass asymptotics (1/z — 0) confirms HQET predictions



Mass dependence in finite-volume QCD ( Nf = 2)

The B-system in finite-volume QCD (L = L;)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

Fritzsch & H., in progress

» But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with Ypg, Yy and its effective theory predictions

Yps(L, z)/Cps(M/A)

Yps(L,z;0) o

fa(L/2,0)

A o)

-1t

-1.1+

-1.7r

-1.8-

0.1

0.2

Xral(L) + O(1/z)

Xrai(L;0) o< ZR%

1 —18

A RGI

f52t(L/2, 0)

fitat(e)
~——
:Xstat(e)

I [Yps/Cps [3-loop 7] constrained, linear (5pt)
& quaderatic fits (all pts)

[2-loop 7]
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Mass dependence in finite-volume QCD ( Nf = 2)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226
The B-system in finite-volume QCD (L = L;)

Fritzsch & H., in progress

» But: some numerical evidence for the previous doubts in the reliability of PT
in the b-quark region is found with Ypg, Yy and its effective theory predictions

Yps(L, z)/Cps(M/A)
fa(L/2,0)

Yps(L,z;0) o Za
1(0)

-1t

-1.1+

-1.7r B

-1.8-

0.15 0.2

] —18

Xral(L) + O(1/z)

Xral(L; 0) o« ZxRer

f52t(L/2, 0)

fitat(e)
~——
:Xstat(e)

?

[3-loop 7] quadratic fits (unconstrained)
[2-loop 7] quadratic fits (unconstrained)
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Mass dependence in finite-volume QCD ( Nf = 2)

Della Morte, Fritzsch, H. & Sommer, PoS LATTICE2008(2008)226

.. Fritzsch & H., in progress
The B-system in finite-volume QCD (L = L;)

» Consider ratios instead, where Cpg cancels completely:

Yps(z; 01) Xt (01)

= + 0O(1/z2)
; stat ( /
Yps(z; 62) X=t2t(0,)
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= These turn smoothly & unconstrained into effective theory predictions



Determination of HQET parameters at O(1/m)

Blossier, Della Morte, Garron & Sommer, arXiv:1001.4783
Vector of the Nyqet = 5 parameters in SyqeT, AS'QET upto O(1/my):

wstat wi classical static
w = (1/m) value value
w mbar; e mp Etaarte
wtt — (m In(ZHQET) t In(ZR9F) 0 In(Z53 5 Cps)
bare 1 A CEQET —1/(2my) acsat
t Wi 1/(2111[,) 0
wd/m = CHQETv Wgin » Wspin ”.]
A p Wipin 1/(2my) 0

= Trick: non-perturbative matching of HQET to QCD in a finite volume
[H. & Sommer, JHEP0402(2004)022]

Matching conditions

@D _ pHQET
QCD u ' ' EQEl| HQET
for observables @;

> (renormal. quantities, ve
computable for a — 0)

=
—




NP matching in L =1,

Suitable observables in the Schrodinger functional, L=T =1; ~ 0.5fm
(Di(]_l,M, Cl) iZl,...,NHQET
Matching conditions for i =1, ..., NyqeT (note: a < go)
i@OcD?CD(Ll, M, a) = @RP(1;, M, 0) = ©HET (1, M, a)

Conveniently, one chooses observables linear in w;, e.g.

©(L,M,a) = n(La)+d(L a)w(M, a)
®; = L(B(L)[H|B(L))
Dy = In (L3/2 (Q(L)] Ao |B(L) >) F2% (L3/2 FB\/mB/2)

L—oo
~ LmB

retat = (B(L) [HIB(L) )stat
n=[ca=m(L2(QL)|A¢|B(L) )star) ¢

o
= O



Step scalingto L=1,

Matching volume L; ~ 0.5fm has very small a, but larger a are needed
= Gap to large volume & practicable lattice spacings, where physical
guantities (mg, Fg) are extracted, bridged by finite-size scaling steps

Qch ! HQET

Ly ; Ly L2 Lo Lo

i

match

S S s Sa s

Fully NP, CL can bé taken everywhere, L — 2L via Step Scaling Functions
DHOET (o) = ai({d);"QET(L),)' =1..., NHQET}) 2L =21, ~ 1.0fm



Step scalingto L=1,

Qch ! HQET

Lo L L, L Loo

Si S S3 Sy Ss

Finite-size scaling to L, =2L:

O Amounts to solve a matrix equation to obtain the HQET parameters at
larger lattice spacings ...

o ...corresponding to —values for simulations in large volume, "L,",
where a B-meson in HQET fits comfortably



Computational setup

o Convenient finite-volume framework: QCD Schrodinger Functional
[Lischer et al., 1992; Sint, 1994 ]

3 HQET expansions of (renormalized) fa(xo) = et (xo) =
SF CFs up to first order in 1/m, x=7 =T
including  Mpare, ZY¥ET and insertions

HQET tat
Ca 5Aaa » WkinOkin wspinospin

9 High numerical accuracy of NP HQET R R
thanks to technical advances: LxixL LxLxL
» HYP-smeared static actions, giving improved statistical precision
[Hasenfratz & Knechtli, 2001; ALpHA 2004/05]
— this change of action does not introduce large cutoff effects
» Inlarge V, evaluate them solving the Generalized EigenValue Problem:
[Michael & Teasdale, 1983; Luscher & Wolff, 1990; ﬂc'a‘ﬂi@‘, Blossier et al., 2009]

Analysis of matrix correlators s.th. a larger gap dominates the excited
state corrections and these disappear more quickly with growing xg

Esf(t,to) = En + Balt)e (FromEnlt



Use of the HQET parameters

These HQET parameters can finally be exploited for phenomenological
applications in the B(5)—meson system, e.g.
O to calculate the b-quark mass and the B(;)—meson decay constant:

MB = Mpare + Estat + wkinEkin + wspinEspin

FB\/@ = ZHQET (1 + bStatamq) Pstat
X (1 + CHQE PsA + WikinPkin + wspinpspin>

Sle

O Mass splittings, such as (radial) excitation energies of B, —states
and the B(5) — BE‘S) mass difference to O(1/my):

HQET
AEn,Ci = (E;}at - Eitat) + Win (Ekm Ekm) + Wspin (E;Em Eipm)
Atp_y = 3 wsmeslpm
E§ Py plateau averages of (bare) effective HQET energies

and matrix elements in large volume

o Note: The power-divergent dm drops out in energy differences



Some examples of N¢ = 0 results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1004.2661

Excited state energy levels, a =~ (0.1,0.08,0.05)fm, L~ 1.5fm, T = 2L
» CFmatrices C5°(t) = ) (Oilxo +t,¥) O7(x)) .. & Ocpin/uin insertions

» GEVP: all-to-all propagators, t—dilution, Gaussian smeared variational basis
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Some examples of N¢ = 0 results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, arXiv:1004.2661

Excited state energy levels, a ~ (0.1,0.08,0.05)fm, L ~ 1.5fm, T = 2L
» CFmatrices C5°(t) = 3 (Oilxo +t,y) Of(x))
» GEVP: all-to-all propagators, t—dilution, Gaussian smeared variational basis

ot & Ospinkin insertions

| - il i
Il JT | —0.07
2.5 15
~0.08
20
4_: i/‘H—/H’_/_HHI ‘,/7["“0
<15 4 )
= 1.0 ¥ o ¢ hes
IS <010
1.0
—0.11
0 —  HYP1
5 —0.12
— HYP2
006500 0.002 0.001 0.006  0.008 —0-13—5%0 0.02 0.01 0.0 0.08
a® [fm?] a [fm]

» Linear a—term suppressed by 1/my, physical O(1/my) corrections are small

» Divergences cancel after proper NP renormalization
= Strong numerical evidence for the renormalizability of HQET



Some examples of N¢ = 0 results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, in preparation

Computation of Fg_ in HQET matches at mg_ with interpolating between
the charm sector (around Fp_) and FSBtSat

— HYP1
200 — HYP2
1o —
L
-
=18 i'//{/k
L7
I—
16 | - o
Lo0000 0002 0.004 0006 0.008

a’ [fm?]
O HYP & GEVP lead to (2—3)% precision for Fg, in the continuum limit, i.e.,
o =0.5fm: Fg* =229(3) MeV, FSBtjt“/m = 212(5) MeV
(using 1o = 0.45 fm leads to ~ 15% increase, but O(1/m2) corrections are small)

O Given the unclear precision of PT, interpolation methods have to be taken
with care; the inherent perturbative error remains to be estimated

O Data points beyond charm difficult for N¢ > 0, obtain slope directly in HQET



Some examples of N¢ = 0 results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma & Sommer, in preparation

Computation of Fg_ in HQET matches at mg_ with interpolating between
the charm sector (around Fp_) and Fthjt

24 T T
32 e
227 [ 32E 12,6
o Fs,Mp, PS T
2r 32 2,5 ]
o FpsMps -
18
1.6
14 -
12 r
1t
0.8
0 0.05 0.1 0.15 0.2 0.25 0.3
1/(rg Mpg)

O HYP & GEVP lead to (2—3)% precision for Fg, in the continuum limit, i.e.,
T = 0.5fm: Fg* = 229(3) MeV, Fao' /™ = 212(5) MeV
(using 1o = 0.45 fm leads to ~ 15% increase, but O(1/m2) corrections are small)

O Given the unclear precision of PT, interpolation methods have to be taken
with care; the inherent perturbative error remains to be estimated

O Data points beyond charm difficult for N¢ > 0, obtain slope directly in HQET



First physical results in the two-flavour theory

Which ingredients are needed ?
Recall the strategy . . .

Qcb HQET
Ly i Ly Lo Lo Lo
- VALY
w w
I
\V/

Sa S5



First physical results in the two-flavour theory

Which ingredients are needed ?

S1 NP matching of HQET to QCD in finite volume with a relativistic b,
to perform the power-divergent subtractions
» Crucial element of this step:
Calculation of the heavy quark mass dependence of heavy-light
meson observables in the continuum limit of finite-volume QCD (L;)
» ... already discussed above

S2.3.4 HQET computations in small & intermediate volumes
» Evaluation of the HQET step scaling functions to connect the small
matching (L; ~ 0.5 fm) to the intermediate volume (L, = 21 ; =~ 1fm)
» Interpolation of the resulting HQET parameters to the large-volume
"Lo" lattice spacings (f = 5.2,5.3,5.5)

Ss HQET computations in large volume
» Extract HQET energies & matrix elements, using N¢ = 2 dynamical
configurations in large volume ("L,", periodic b.c.'s) produced by CLS
» Action: NP'ly O(a) improved N¢ = 2 Wilson; algorithm: DD-HMC
» Problem of slow sampling of topology less relevant here, since HQET
can afford to work with much coarser lattices



HQET energies & matrix elements (preliminary)

ALPHA talk by B. Blossier

Preliminary N¢ =2 HQET results in large volume CLS

based

» Gauge configuration ensembles with Ny =2 O(a) improved Wilson

fermions

B | alfm] L3xT | m.[MeV] # | traj. sep.

5.2 0.08 323 x 64 700 110 16
323 x 64 370 160 16

5.3 0.07 323 x 64 550 152 32
323 x 64 400 600 32
483 x 96 300 192 16
483 x 96 250 350 16

55 0.05 323 x 64 430 250 20

» Use of HYP-smearing & variant of the stochastic all-to-all propagator method
for the light quarks (8 noise sources, full time-dilution) [Foley et al., 2005]

» GEVP: cleanly quantify systematic errors from excited state contaminations
(variational basis of interpolating fields through Gaussian smearing levels)

» Energies, splittings, ground & excited state matrix elements of the B, . . .



HQET energies & matrix elements (preliminary)

ALRHA talk by B. Blossier
CLS

based

Static energies (p = 5.3, a = 0.07 fm) & extrapolation to the chiral limit,

where the 1o/a uncertainty is still large
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[Scale prelim.; talk by B. Leder]
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HQET energies & matrix elements (preliminary)

ALPHA talk by B. Blossier

Fg: renormalized (not O(a) improved) matrix element of A", data well
described by HMxPT
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HQET energies & matrix elements (preliminary)

ALPHA talk by B. Blossier
CLS

based

Spin-splitting: situation for O(1/m) terms of energies is encouraging
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HQET parameters (preliminary)

After evolution to L, where 5.3 <3 <5.8

©; =L (B(L)[H[B(L))

O(m)

0(1)

ALPAA “talk by N. Garron

Dy =1In (132 (Q(L)|Ag|B(L)))
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(a finer lattice resolution is still running)
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b-quark mass interpolation (preliminary)

ALPHA
Now insert w; € w(M, a) for Ng = 2: “aeri, alk by N. Garron

mp = W1 + Estat = Mpare + Estat = W1 + Estat
|im0[ stat — 1%Ly, a) | a=(0.1—-0.05)fm
a—

+ lim [rstat(Lz a) —I*(Ly,a)] a=(0.05—0.025)fm
a—

—I-— ||m ®q(Ly,Mp,a) a=(0.025—0.012) fm

L1 a—0
Analysis with T‘Omée)(p) ,To = (0.475 £ 0.025) fm [Scale prelim.; talk by B. Leder]
:; 7 > mt',\/ls( b)stat —
- 4. 255(25)1‘0 (50)stat+renorm( ) GeV
JE 15 B /;1/ | » NP renormalization; no CL yet in the
B4 /;jiif:“‘ ] large volume part (only = 5.3)
o113 s 1 » Error dominated by ~ 1% on Zy in
12} ,::;i?*' ] ] LM =2ZyZ(1+byramg) x Limg
P I B » Dependence on the matching
13 14 15 16 17 18

kinematics is very small

Z:LlM




b-quark mass interpolation (preliminary)

ALPHA
Now insert w; € w(M, a) for Ng = 2: “aeri, alk by N. Garron

mp = W1 + Estat = Mpare + Estat = W1 + Estat
|im0[ stat — 1%Ly, a) | a=(0.1—-0.05)fm
a—

+ lim [rstat(Lz a) —I*(Ly,a)] a=(0.05—0.025)fm
a—

—I-— ||m ®q(Ly,Mp,a) a=(0.025—0.012) fm
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b-quark mass interpolation (preliminary)

ALPHA
Now insert w; € w(M, a) for Ng = 2: “aeri, alk by N. Garron

mp = W1 + Estat = Mpare + Estat = W1 + Estat
|im0[ stat — 1%Ly, a) | a=(0.1—-0.05)fm
a—

+ lim [rstat(Lz a) —I*(Ly,a)] a=(0.05—0.025)fm
a—

—I-— ||m ®q(Ly,Mp,a) a=(0.025—0.012) fm

L; a—o0
Analysis with rom,(;xp) ,To = (0.475 £ 0.025) fm  [Scale prelim.; talk by B. Leder]
17 " i T T " i > mtl)VIS( b)stat+1/m _
16/ 1 4.320(40),,(48) GeV (N; =01)
215 _=* | » NP renormalization; no CL yet in the
éﬂmf /,:j;:i*'/ ] large volume part (only p = 5.3)
213 = 7 1 » Error dominated by ~ 1% on Zy, in
1ol P LiM=2ZwZ(1+bmamg) x Lym,
» Dependence on the matching

13 14 15 16 17 18 kinematics is very small
z=L1M Unquenching effect is presently not significant
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b-quark mass interpolation (preliminary)

ALPHA
Now insert w; € w(M, a) for Ng = 2: “aeri, alk by N. Garron

mp = W1 + Estat = Mpare + Estat = W1 + Estat
|im0[ stat — 1%Ly, a) | a=(0.1—-0.05)fm
a—

+ lim [rstat(Lz a) —I*(Ly,a)] a=(0.05—0.025)fm
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Analysis with rom,(;xp) ,To = (0.475 £ 0.025) fm  [Scale prelim.; talk by B. Leder]
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z=L1M Unquenching effect is presently not significant
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Conclusions

O Lattice heavy flavour physics has become a precision field

O Lattice QCD inputs have to be pushed to few-% level (incl. reliable
assessment of all systematics), to contribute to uncovering signals for
BSM physics in CKM analyses and resolve / support current tensions

o Dynamical quark simulations (Ns = 2,2+ 1,2 + 1 4 1) are routine:
m, ~ 500 MeV (2001) — m, < 250 MeV (2010), but the behaviour

~

of algorithms at small lattices spacings needs to be understood

O Lattice artefacts are being investigated, but there are not yet always
systematic continuum limit extrapolations

o Non-perturbative renormalization & matching in HQET is doable with
considerable accuracy

O Cross-checks between different calculations employing different
techniques are demanded to ensure credibility in our lattice results
and its impact for phenomenology
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