Heavy flavour dynamics from lattice QCD

Jochen Heitger

LATTICE 2010

The XXVIII International Symposium on Lattice Field Theory Villasimius (Sardinia), Italy, June 14 - 19, 2010

(Lattice) QCD and the weak interaction

New Physics effects expected in the quark flavour sector, because most extensions of the Standard Model contain

- new CP-violating phases
- new quark flavour-changing interactions

Changes of quark flavour inside a hadron are weak interaction processes
\rightarrow Due to confinement, QCD corrections to the decay rate are significant
\rightarrow Non-perturbative QCD effects typically absorbed into hadronic matrix elements such as decay constants, form factors and bag parameters
\Rightarrow A task for lattice QCD

The CKM matrix

. . . encodes the mixing between quark flavours under weak interactions

$$
\underbrace{\left(\begin{array}{c}
\mathrm{d}^{\prime} \\
\mathrm{s}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right)}_{\text {weak int. }}=\mathrm{V}_{\mathrm{CKM}} \underbrace{\left(\begin{array}{c}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right)}_{\text {strong int. }} \quad \mathrm{V}_{\mathrm{CKM}}=\left(\begin{array}{ccc}
\mathrm{V}_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right)
$$

Wolfenstein parametrization of the CKM matrix

- Empirically, matrix elements are largest among the diagonal \rightarrow hierarchy gets explicit by expansion in powers of $\left|\mathrm{V}_{\text {us }}\right|=\lambda \simeq 0.22$
- \exists unitarity relations such as $\mathrm{V}_{\mathrm{ud}} \mathrm{V}_{\mathrm{ub}}^{*}+\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}^{*}+\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{tb}}^{*}=0$
$\rightarrow \mathrm{V}_{\text {CKM }}$ represented as unitarity triangle in the complex (ρ, η)-plane up to $O\left(\lambda^{4}\right)$:

$$
\left.\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

Impact of LQCD on precision heavy flavour physics

Heavy quark sector constrains UT: angles \& sides are related to hadronic matrix elements of $\mathcal{H}_{\text {weak }}^{(\text {eff })}$, corresponding to mesonic decays/transitions
$\Delta m_{d} \propto F_{B_{d}}^{2} \widehat{B}_{B_{d}}\left|V_{t d} V_{t b}^{*}\right|^{2} \quad \frac{\Delta m_{s}}{\Delta m_{d}}=\xi^{2} \frac{m_{B_{s}}}{m_{B_{d}}} \frac{\left|V_{t \mathrm{t}}\right|^{2}}{\left|V_{t d}\right|^{2}} \quad \xi=F_{B_{s}} \sqrt{\widehat{B}_{B_{s}}} / F_{B_{d}} \sqrt{\widehat{B}_{B_{d}}}$

- \exists large number of experimental data from heavy flavour-factories (CLEO, BaBar, Belle, LHCb, ...)
- Inputs of theory and predominantly LQCD computations needed to
- interpret results of experimental measurements
- determine / pin down heavy quark masses \& CKM matrix elements
- overconstrain unitarity relations \leftrightarrow unveiling New Physics effects
$\left(\begin{array}{ccc}\mathbf{V}_{\mathrm{ud}} & \mathbf{V}_{\mathrm{us}} & \mathbf{V}_{\mathrm{ub}} \\ \pi \rightarrow \ell v & \mathrm{~K} \rightarrow \ell v & \mathrm{~B} \rightarrow \pi \ell v \\ & \mathrm{~K} \rightarrow \pi \ell v & \\ \mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathbf{c s}} & \mathbf{V}_{\mathbf{c b}} \\ \mathrm{D} \rightarrow \ell v & \mathrm{D}_{\mathrm{s}} \rightarrow \ell v & \mathrm{~B} \rightarrow \mathrm{D} \ell v \\ \mathrm{D} \rightarrow \pi \ell v & \mathrm{D} \rightarrow \mathrm{K} \ell v & \mathrm{~B} \rightarrow \mathrm{D}^{*} \ell v \\ \mathbf{V}_{\mathrm{td}} & \mathbf{V}_{\mathrm{ts}} & \mathbf{V}_{\mathrm{tb}} \\ \mathrm{B}_{\mathrm{d}} \leftrightarrow \overline{\mathrm{B}}_{\mathrm{d}} & \mathrm{B}_{\mathrm{s}} \leftrightarrow \overline{\mathrm{B}}_{\mathrm{s}} & \end{array}\right)$
"Gold-plated" lattice processes
- 1 hadron in the initial state, 0 or 1 hadron in the final state
- stable hadrons (or narrow, far from theshold)
- controlled χ-extrapolation

Impact of LQCD on precision heavy flavour physics

- Constrain apex ($\bar{\rho}, \bar{\eta}$) as precisely as possible by independent processes
- Theory \& Exp. sufficiently precise \Rightarrow New Physics = inconsistent $(\bar{\rho}, \bar{\eta})$
- LQCD inputs from the heavy sector:
- B-meson decays \& mixing: $\mathrm{F}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}$
- $\mathrm{B} \rightarrow \mathrm{D}^{(*)}$ decays: $F(1), G(1) \hookrightarrow\left|V_{c b}\right|$
- semi-leptonic B-meson decays: $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right) \hookrightarrow\left|\mathrm{V}_{\mathrm{ub}}\right|$

What is the required precision for key contributions to phenomenology?

- Experiments reach few-\% level, even $\leqslant 5 \% \Rightarrow$ theory error dominates $\Delta \mathrm{m}_{\mathrm{d}, \mathrm{s}}:<1 \%$ [PDG,CDF], $\mathcal{B}\left(\mathrm{D}_{(\mathrm{s})} \rightarrow \mu v\right): \leqslant 4 \%$ [CLEO-c], $\mathcal{B}\left(\mathrm{B} \rightarrow \mathrm{D}^{*} \ell \mathrm{~V}\right): 1.5 \%$ [HFAG]
- Lattice calculations with an accuracy of $\mathrm{O}(5 \%)$ or better required \rightarrow incl. all systematics (unquenching, extrapolations, renormalization, ...)
- Verification/Agreement of results using different formulations crucial !

Light sea quark configurations in use

[in current studies of heavy quark physics]
Quenched approximation ($\mathrm{N}_{\mathrm{f}}=0$)

- No dynamical fermions, not suitable for phenomenology
- Still useful test laboratory, e.g., to understand methodologies etc.

Two-flavour QCD ($\mathrm{N}_{\mathrm{f}}=2$)

- NP'ly O(a) improved Wilson (= clover) action
- algorithmic progress (e.g., "Hasenbusch trick" and M. Lüscher's DD-HMC) render simulations competitive in the chiral regime
- ALPHA \in Coordinated Lattice Simulations = European team effort
- Regensburg (QCDSF)
- Twisted mass Wilson (with tree-level Symanzik-improved glue)
- O(a) improved by tuning to maximal twist; keep an exact χ-symmetry at the price of breaking part of the flavour symmetries and parity
- ETMC
- Stout-smeared, chirally improved (with 1-loop improved LW glue)
- BGR

Light sea quark configurations in use

[in current studies of heavy quark physics]
Three-flavour QCD $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)$

- MILC ensembles of AsqTad-improved staggered quarks (with LW-improved glue)
- computationally "cheap", permit simulations within the chiral regime
- debated rooting prescription $\left[\operatorname{det}^{(4)}\left(D_{\text {st }}+m\right)\right]^{\frac{1}{4}} \equiv \operatorname{det}^{(1)}\left(\gamma_{\mu} D_{\mu}+m\right)$, but effects seem to disappear in the CL; results agree with experiment
- MILC \& FNAL, HPQCD
- Domain wall fermions (with Iwasaki gauge action)
- chirality preserving (realized as 5th dim. $\mathrm{L}_{\mathrm{s}}=\infty$)
- RBC \& UKQCD
- NP'ly $\mathrm{O}(\mathrm{a})$ improved Wilson (with Iwasaki gauge action)
- PACS-CS

Four-flavour QCD ($\mathrm{N}_{\mathrm{f}}=2+1+1$)
\rightarrow in progress by ETMC \& planned/started by other groups

Challenge of LHQP: The multi-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio interaction range << physical length scales momentum cutoff \gg physical mass scales: $\quad \Lambda_{\text {cut }} \sim a^{-1} \gg E_{i}, m_{j}$

This is a challenge in QCD, which has many physical scales:

hierarchy of disparate physical scales to be covered:

$$
\Lambda_{\mathrm{IR}}=\mathrm{L}^{-1} \ll m_{\pi}, \ldots, m_{\mathrm{D}}, \mathrm{~m}_{\mathrm{B}} \ll \mathrm{a}^{-1}=\Lambda_{\mathrm{UV}}
$$

$$
\left\{\mathrm{O}\left(\mathrm{e}^{-\mathrm{Lm} \mathrm{~m}_{\pi}}\right) \Rightarrow \mathrm{L} \gtrsim \frac{4}{\mathrm{~m}_{\pi}} \sim 6 \mathrm{fm}\right\} \curvearrowright \mathrm{L} / \mathrm{a} \gtrsim 120 \curvearrowleft\left\{\mathrm{am}_{\mathrm{D}} \lesssim \frac{1}{2} \Rightarrow \mathrm{a} \approx 0.05 \mathrm{fm}\right\}
$$

Challenge of LHQP: The multi-scale problem

Predictivity in a quantum field theory relies upon a large scale ratio interaction range \ll physical length scales momentum cutoff \gg physical mass scales: $\Lambda_{\text {cut }} \sim \mathrm{a}^{-1} \gg \mathrm{E}_{\mathrm{i}}, \mathfrak{m}_{\mathfrak{j}}$

This is a challenge in QCD, which has many physical scales:

\Rightarrow Difficult to satisfy simultaneously, clever technologies are required

- charm just doable, but lattice artefacts may be substantial (see later)
- given the today's computing resources, it seems impossible to work directly with relativistic b-quarks (i.e. resolving its propagation) on the currently simulated lattices
- the b-quark scale ($m_{b} / m_{c} \sim 4$) has to be separated from the others in a theoretically sound way before simulating the theory

Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of

Heavy quarks introduced as valence quarks = "Partially quenched" setting

Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of strong lattice artefacts: $\quad a m_{c} \lesssim 1 \quad a m_{b}>1$ Heavy quarks introduced as valence quarks = "Partially quenched" setting Relativistic formulations \rightarrow mainly for D-physics applications

- Wilson-like quarks: clover or $\mathrm{TM}, \mathrm{am}_{\mathrm{c}} \leqslant 1 / 2 \ll 1$ desirable
- $\left.\mathrm{O}\left[(\mathrm{am})^{2}\right)^{2}\right]$ discretization effects

ALPHA, ETMC

- Fermilab approach: relativistic clover action with HQET interpretation
[El-Khadra, Kronfeld \& Mackenzie, 1997]
- $\mathrm{O}\left[\alpha_{\mathrm{s}}\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{Q}}\right),\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{Q}}\right)^{2}\right]$ errors
- variants $=$ RHQ actions \rightarrow NP'ly tuned parameters, $\mathrm{O}\left[(a p)^{2}\right]$ errors
[Aoki et al., 2001; Christ et al., 2006]
- adopted for charm \& beauty FNAL \& MILC, PACS-CS, RBC \& UKQCD
- HISQ: goes beyond $O\left(a^{2}\right)$ tree-level improvement of AsqTad
- perturbative Symanzik-improvement/smearing of the gauge fields \Rightarrow no tree-level $\mathrm{O}\left[\left(\mathrm{am}_{\mathrm{Q}}\right)^{4}, \alpha_{\mathrm{s}}\left(\mathrm{am}_{\mathrm{Q}}\right)^{2}\right]$ errors to leading order in v / c
- 1-loop taste-changing interactions reduced by a factor ~3
- now also being tried towards the bottom region

Heavy quark formalisms in use

Lattice heavy quark physics has to deal with the presence of strong lattice artefacts : $\quad \mathrm{am}_{\mathrm{c}} \lesssim 1 \quad \mathrm{am}_{\mathrm{b}}>1$ Heavy quarks introduced as valence quarks = "Partially quenched" setting Non-relativistic / effective field theory strategies \rightarrow B-physics applications

- NRQCD: discretized non-relativistic expansion of the continuum \mathcal{L}_{D}
- improved through $\mathrm{O}\left(1 / m_{Q}^{2}, a^{2}\right)$ and leading relativistic $\mathrm{O}\left(1 / m_{Q}^{3}\right)$
- $\mathrm{O}\left[\alpha_{\mathrm{s}}^{\mathrm{n}} /\left(\mathrm{am}_{\mathrm{Q}}\right)\right]$ divergences
- Static approximation = Leading-order HQET (ETMC)
- HQET-guided extrapolations of fully relativistic simulations in the charm regime, turning into interpolations if the static limit is known
- also in conjunction with finite-volume/finite-size scaling techniques
$-$
INFN-TOV, ALPHA, ETMC
- HQET for the b-quark: systematic expansion in $\Lambda_{Q C D} / m_{b}$
- NP fine-tuning of parameters to $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$ \& impr. statistical precision
- connect different volumes iteratively with "step scaling functions"

Summary of heavy quark physics calculations

group	$\mathrm{a}[\mathrm{fm}]$	$\mathrm{m}_{\pi}^{(\min)}[\mathrm{MeV}]$	q	Q			
$\mathrm{N}_{\mathrm{f}}=2$							
ETMC	$0.05,0.065,0.085,0.10$	270	TM	static /TM			
Regensburg	0.08	170	clover	clover			
ALPHA	$0.08,0.07,0.05$	250	clover	static $+1 / \mathrm{m}$			
$\mathrm{N}_{\mathrm{f}}=2+1$							
FNAL \& MILC I	$0.09,0.12,0.15$	230	AsqTad	Fermilab			
FNAL \& MILC II	$0.06,0.09,0.12,0.15$	230	AsqTad	Fermilab			
HPQCD I	$0.09,0.12$	260	AsqTad	NRQCD			
HPQCD II	$0.09,0.12,0.15$	320	HISQ	NRQCD			
HPQCD III	$0.045,0.06,0.09, \ldots$	320	HISQ	HISQ			
RBC \& UKQCD	$0.08,0.11$	$330(300)$	DW	static /RHQ			
PACS-CS	0.09	200	clover	RHQ			
$N_{f}=2+1+1$						TM	Osterw.-Seiler
ETMC	$0.06,0.079,0.09$	$270(230)$					

Outline

- Heavy quark masses from Lattice QCD
- Cutoff effects in the charm sector
- c- and b-quark masses from current-current correlators
- m_{b} via scaling laws in the heavy quark limit
- Calculations of hadronic weak matrix elements
- D-meson decay constants
- B-meson decay constants
- Semi-leptonic decay form factors
- B -meson mixing parameters
- $\mathrm{B}^{*} \rightarrow \mathrm{~B} \pi$ coupling
- Non-perturbative HQET in two-flavour QCD
- Non-perturbative formulation of HQET
- Strategy to determine HQET parameters at O($1 / \mathrm{m}$)
- First physical results in the two-flavour theory
- Conclusions \& Outlook

I will focus on a selection of most recent progress/results, however, not without some personal "bias". Therefore, sorry for omissions

Heavy quark masses from Lattice QCD

- Cutoff effects in the charm sector
- c- and b-quark masses from current-current correlators
- m_{b} via scaling laws in the heavy quark limit

Cutoff effects in the charm sector $\left(\mathrm{N}_{\mathrm{f}}=0\right)$

H. \& Jüttner, JHEP0905(2009)101

Calculation of the charm quark's mass
[Rolf \& Sint, 2002]

- Physics input: bare charm mass in $\mathcal{L}_{\mathrm{QCD}}$ s.th. $\mathrm{m}_{\mathrm{D}_{\mathrm{s}}} / F_{\mathrm{K}}=$ experiment
- Additional complication in the charm sector:
- $\mathrm{O}\left(\mathrm{am}_{\mathrm{q}, \mathrm{c}}\right)$ cutoff effects become relevant, e.g., in the definition

$$
M_{c}=Z_{M}\left[1+\left(b_{A}-b_{P}\right) a m_{q, c}\right] m_{c}=Z_{M} \frac{Z_{m} Z_{\mathrm{P}}}{Z_{A}} m_{q, c}\left(1+b_{m} a m_{q, c}\right)
$$

$\rightarrow \mathrm{O}\left(\mathrm{am}_{\mathrm{q}, \mathrm{c}}\right)$ removed NP'ly
$\left[{ }_{\text {End }}^{\text {ILPHA }} 2001\left(\mathrm{~N}_{\mathrm{f}}=0\right) \& 2010\left(\mathrm{~N}_{\mathrm{f}}=2\right)\right]$

large volume, $\mathrm{a} \approx(0.09-0.03) \mathrm{fm}$

- $\mathrm{N}_{\mathrm{f}}=0, \mathrm{r}_{0}=0.5 \mathrm{fm}: M_{\mathrm{c}}=1.60(3) \mathrm{GeV}$
$\Rightarrow \quad \bar{m}_{c}^{\overline{M S}}\left(\bar{m}_{c}\right)=1268(24) \mathrm{MeV}$
- $M_{b} \simeq 4 M_{c}$
s.th. beauty is not yet accomodated \rightarrow for b-quarks, continuum limit $a \rightarrow 0$ can't be controlled in this way
\Rightarrow effective field theory strategies needed

Cutoff effects in the charm sector $\left(\mathrm{N}_{\mathrm{f}}=0\right)$

Warning from $\mathrm{F}_{\mathrm{D}_{\mathrm{s}}}$: Lattice artefacts may be large for charm physics

- High-precision computation in $V=L^{3} \times T$, $L \approx 2 \mathrm{fm}, \mathrm{T}=2 \mathrm{~L}, \mathrm{a} \approx(0.09-0.03) \mathrm{fm}(!)$
- $\mathrm{F}_{\mathrm{D}_{\mathrm{s}}}^{2} \mathrm{~m}_{\mathrm{D}_{\mathrm{s}}}=\mathrm{Z}_{\mathrm{A}} 2 \mathrm{~L}^{3}\left[\langle 0| A_{\mu}^{\mathrm{cs}}\left|\mathrm{D}_{\mathrm{s}}^{+}(\mathrm{p}=0)\right\rangle\right]^{2}$ from ground state dominance of SF CFs
- Controlling the continuum limit of charmed observables demands scaling study down to very fine lattice spacings ($a \leqslant 0.07 \mathrm{fm}$)

Lesson from $\mathrm{N}_{\mathrm{f}}>0$:

Symanzik programme works for charm, but $\mathrm{a}<0.08 \mathrm{fm}$ seems mandatory
However, small lattice spacings are challenging:
Rapid slowing down of the gauge fields' topological modes with decreasing lattice spacings
[Talks by M. Lüscher; F. Virotta]

Parametric inputs to many SM and Beyond SM calculations

$\bar{m}_{c}^{\overline{M S}}\left(\bar{m}_{c}\right)=1279(13) \mathrm{MeV}, \overline{\mathrm{m}}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\overline{\mathrm{m}}_{\mathrm{b}}\right)=4163(16) \mathrm{MeV}$; consistent with NP methods? m_{c}

- LQCD can contribute to further reduce the error budget for the rare decay branching ratio $\mathcal{B}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)$ by precisely computing m_{c} m_{b}
- Tensions between inclusive \& exclusive determinations of $\left|\mathrm{V}_{\mathrm{cb}}\right|,\left|\mathrm{V}_{\mathrm{ub}}\right|$
[R.van de Water @ Lattice 2009]
- Extraction of/UT constraint via $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from inclusive decays extremely sensitive to the input value for m_{b}
\Rightarrow accurate unquenched determinations required

$m_{c} \& m_{b}$ from current-current correlators

In the spirit of the previous method, heavy quark masses are extracted via dispersion relations by comparing perturbative zero-momentum moments of current-current correlators (available to 4-loop by the Karlsruhe group) with lattice data in place of experimental data for $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

$$
G(t)=a^{6} \sum_{x}\left(a m_{0 h}\right)^{2}\langle 0| j_{5}(x, t) j_{5}(0,0)|0\rangle \quad j_{5}=\bar{\psi}_{h} \gamma_{5} \psi_{h}
$$

is finite and unrenormalized as $a \rightarrow 0$ (PCAC), and g_{n} from continuum PT:

$$
G_{n} \equiv \sum_{t}(t / a)^{n} G(t)=\frac{g_{n}\left(\alpha_{\overline{M S}}(\mu), \mu / m_{h}\right)}{\left(a m_{h}(\mu)\right)^{n-4}}+O\left(\left(a m_{h}\right)^{m}\right) \quad n \geqslant 4
$$

Reduced moments to suppress lattice artefacts and tuning errors in $\mathrm{am}_{0 \mathrm{~h}}$:
$R_{n} \equiv\left\{\begin{array}{ll}G_{4} / G_{4}^{(0)} & \text { for } n=4 \\ \frac{a m_{\eta_{h}}}{2 a m_{0 h}}\left(G_{n} / G_{n}^{(0)}\right)^{1 /(n-4)} & \text { for } n \geqslant 6\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { continuum quantities, } \\ m_{\eta_{c}}^{(\text {(exp })}, m_{\eta_{b}}^{(\text {exp })} \text { as input }\end{array}\right.$

$m_{c} \& m_{b}$ from current-current correlators

Reduced moments:
HPQCD, McNeile et al., arXiv:1004.4285
$R_{n} \equiv\left\{\begin{array}{ll}G_{4} / G_{4}^{(0)} & \text { for } n=4 \\ \frac{a m_{\eta_{h}}}{2 a m_{0 h}}\left(G_{n} / G_{n}^{(0)}\right)^{1 /(n-4)} & \text { for } n \geqslant 6\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}\text { continuum quantities, } \\ m_{\eta_{c}}^{(\text {(exp) }}, m_{\eta_{b}}^{(\text {exp })} \text { as input }\end{array}\right.$
New simulation / Analysis features compared to 2008:

- MILC $\mathrm{N}_{\mathrm{f}}=2+1$ sea, HISQ for valence c- and very close-to b-quarks
- Finer lattice resolutions: $a=(0.06,0.045) \mathrm{fm}$
- New 3rd order PT for R_{10}, variety of masses around m_{c}
- Sophisticated fitting techniques
- simultaneous constrained, Bayesian fits to all parameter sets (specified by a, $\mathrm{am}_{0 \mathrm{~h}}$), with priors for a large \# of parameters
- applied to the ansatz for the cutoff effects modelled according to

$$
R_{n}\left(\mu, m_{\eta_{h}}, a, N_{a m}\right) \equiv R_{n}^{c o n t} /\left[1+\sum_{i=1}^{N_{a m}} \sum_{j=0}^{N_{z}} c_{i j}^{(n)}\left(\frac{a m_{\eta_{h}}}{2}\right)^{2 i}\left(\frac{2 \Lambda}{m_{\eta_{h}}}\right)^{j}\right]
$$

- $0.3 \lesssim \mathrm{am}_{\eta_{\mathrm{h}}} / 2 \lesssim 1.1 \&$ tiny statistical errors
\Rightarrow decent fits only when $\mathrm{Nam}_{\mathrm{am}}>10-20$ \& restricting $\mathrm{am}_{\eta_{\mathrm{h}}} \leqslant 1.95$!

$m_{c} \& m_{b}$ from current-current correlators

HPQCD, McNeile et al., arXiv:1004.4285

Cutoff effects decrease with n, but n should be small enough for PT to be applicable

- One presumes that 1.) the Symanzik expansion is a convergent expansion and 2.) that it is still useful up to $\mathrm{am}_{\mathrm{h}} \approx 1 \rightarrow$ too optimistic?
- As final results, incl. all systematics, HPQCD quotes:
$\bar{m}_{c}^{\overline{M S}}\left(\bar{m}_{c}, N_{f}=4\right)=1.273(6) \mathrm{GeV}, \bar{m}_{b}^{\overline{M S}}\left(\bar{m}_{b}, N_{f}=5\right)=4.164(23) \mathrm{GeV}$

m_{b} via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049
Determine B-physics parameters by extrapolating ratios of heavy-light meson masses \& decay constants obtained around m_{c} to the m_{b}-region, employing scaling laws in the heavy-quark limit

- For many years:

Conventional extrapolations of charm data to the bottom-scale based on heavy quark scaling laws

m_{b} via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049
Determine B-physics parameters by extrapolating ratios of heavy-light meson masses \& decay constants obtained around m_{c} to the m_{b}-region, employing scaling laws in the heavy-quark limit

- For many years:

Conventional extrapolations of charm data to the bottom-scale based on heavy quark scaling laws

- New method proposed:
1.) Interpolation of proper ratios between the charm region and their (known) static limits to a sequence of reference quark masses $\bar{m}_{h}^{(i)}$ towards m_{b}
2.) Mapping of simulation data of observables in the charm region to the B-scale $m_{B}^{(\text {exp })}$, by multiplying them with these ratios

$$
y\left(x, \lambda, \bar{m}_{l}\right) \sim \lambda^{-1} \frac{\mathcal{O}_{h l}\left(1 / x, \bar{m}_{l}\right)}{\mathcal{O}_{h l}\left(1 / \lambda x, \bar{m}_{l}\right)} \frac{z(\ln \lambda x)}{z(\ln x)} \quad x=1 / \bar{m}_{h}, \lambda=\frac{x^{(n-1)}}{x^{(n)}}>1
$$

where further logarithmic terms must be included and $\mathcal{O}_{\mathrm{hl}}^{\mathrm{QCD}}=z \mathcal{O}_{\mathrm{hl}}^{\mathrm{HQET}}$

$$
\Rightarrow \quad \lim _{x \rightarrow 0} y\left(x, \lambda, \bar{m}_{l}\right)=1 \quad z: \text { PT'ly known }
$$

m_{b} via scaling laws in the heavy quark limit

ETMC, Blossier at al., JHEP1004(2010)049

Results for $\mathrm{N}_{\mathrm{f}}=2$ maximally twisted mass Wilson fermions:
$\bar{m}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\bar{m}_{\mathrm{b}}\right)=4.63(27) \mathrm{GeV}$

$$
\mathrm{F}_{\mathrm{B}}=194(16) \mathrm{MeV} \quad \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}=235(12) \mathrm{MeV}
$$

- $\mathcal{O}_{\mathrm{hl}}=\mathrm{m}_{\mathrm{hl}}$: heavy-light meson mass \hookrightarrow computation of \bar{m}_{b} $\mathcal{O}_{h l}=\mathrm{F}_{\mathrm{hl}}$: heavy-light decay constant \hookrightarrow computation of $\mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$
- Error budget: $\sim 50 \%$ from $\mathcal{O}_{\mathrm{hl}}\left(\bar{m}_{h}^{(1)}\right), \sim 50 \%$ from y-ratios
- Authors expect this method to have smaller errors than free extrapolations with heavy quark scaling laws

Further work to determine heavy quark masses reported at the conference

- Preliminary $\mathrm{N}_{\mathrm{f}}=2$ result by ETMC:
[Talk by F. Sanfilippo]
$\bar{m}_{c}^{\overline{M S}}\left(\bar{m}_{c}\right)=1.275(35) \mathrm{GeV} \quad$ RI-MOM renormalization \& continuum limit
- The c-quark mass from charm current-current correlators in TM QCD
[ETMC, talk by M. Petschlies]
- The b-quark mass from lattice NRQCD (using PT and simulation data)
[Poster by C. Monahan]

Calculations of hadronic weak matrix elements

- D-meson decay constants
- B-meson decay constants
- Semi-leptonic decay form factors
- B-meson mixing parameters
- $\mathrm{B}^{*} \rightarrow \mathrm{~B} \pi$ coupling

$F_{D} \& F_{D_{s}}-$ Test of LQCD techniques

$$
\mathcal{B}\left(D_{s}^{+} \rightarrow \ell^{+} \bar{v}\right)=\frac{G_{F}^{2} m_{\ell}^{2} m_{D_{s}^{+}}}{8 \pi}\left(1-\frac{m_{\ell}^{2}}{m_{D_{S}^{+}}^{2}}\right)^{2} F_{D_{s}}^{2}\left|V_{C S}\right|^{2} \quad \ell^{+}=\mu^{+}, \tau^{+}
$$

- Measuring the branching ratio, experiment yields $F_{D_{s}}^{2}\left|V_{c s}\right|^{2}$ s.th. assuming CKM unitarity $\left|V_{\mathrm{ud}}\right|=\left|\mathrm{V}_{\mathrm{cs}}\right|+\mathrm{O}\left(\lambda^{4}\right)$, one can compare $\mathrm{F}_{\mathrm{D}_{s}}$ with $\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} c\left|D_{s}(\mathfrak{p})\right\rangle=i \mathrm{~F}_{\mathrm{D}_{s}} p_{\mu}$ from LQCD
- $F_{D} \leftrightarrow V_{c d}$, but $F_{D_{s}}$ needs no chiral extrapolation in the valence sector

$$
\mathrm{F}_{\mathrm{D}}[\mathrm{MeV}] \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}[\mathrm{MeV}]
$$

Among the possible explanations for the discrepancy between experiment and lattice:

- Experimental issues?
- Systematic effect, e.g., discret. error missed?
- Tension = Hint of new physics in the flavour sector?

$F_{D} \& F_{D_{s}}$ - The " $F_{D_{s}}$ puzzle" revisited

Discrepancy rose to 3.8σ in 2007 w.r.t. HPQCD's result, using $\mathrm{N}_{\mathrm{f}}=2+1$ HISQ valence quarks on rooted staggered MILC sea (based on $\mathrm{a}=0.15,0.12,0.09 \mathrm{fm}$, but consistent with adding $\mathrm{a} \approx 0.06,0.045 \mathrm{fm}$)
$\mathrm{F}_{\mathrm{D}}=207(4) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}=241(3) \mathrm{MeV} \quad$ combined χ \& continuum extrap.

Tracing the discrepancy's history [compilation by A. Kronfeld, arXiv:0912.0543]

- new meas. by CLEO 01/09: -0.8σ
- FNAL \& MILC's update 2009 after re-analysis of $\mathrm{r}_{1} \mathrm{~F}_{\pi}$: -0.13σ
- HFAG's interpretation of the BaBar measurement: -0.67σ
- new meas. by CLEO 10/09: $+0.1 \sigma$
\Rightarrow The tension moved down to 2.3σ

$F_{D} \& F_{D_{s}}$ - The " $F_{D_{s}}$ puzzle" revisited

Discrepancy rose to 3.8σ in 2007 w.r.t. HPQCD's result, using $\mathrm{N}_{\mathrm{f}}=2+1$ HISQ valence quarks on rooted staggered MILC sea
(based on $a=0.15,0.12,0.09 \mathrm{fm}$, but consistent with adding $a \approx 0.06,0.045 \mathrm{fm}$)
$\mathrm{F}_{\mathrm{D}}=207(4) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}=241(3) \mathrm{MeV} \quad$ combined χ \& continuum extrap.

Influence of the lattice scale setting by r_{1} :
$r_{1}^{2} F\left(r_{1}\right) \stackrel{!}{=} 1 \quad F(r)=d V / d r \quad r_{1}=0.321(5)$ fm from $\curlyvee 2 S-1 S$ splitting (uncertainty on r_{1} dominates the error budget of $\mathrm{F}_{\mathrm{D}_{s}}$)

New scale determination, combining r_{1}-results from Υ, D_{s} mass splittings (via HISQ) and $\mathrm{F}_{\eta_{\mathrm{s}}}$ with MILC's $\mathrm{r}_{1} / \mathrm{a}$ [HPQCD, Davies et al, PRD81(2010)034506]
$r_{1}=0.3133(23) \mathrm{fm} \quad \Rightarrow \quad 1.6 \sigma$ discrepancy with CLEO-2009
\Rightarrow Given the high statistical accuracy of the calculations, it's even more important to carefully assess the overall error incl. all systematics

$F_{D} \& F_{D_{s}}-$ The " $F_{D_{s}}$ puzzle" revisited

Discrepancy rose to 3.8σ in 2007 w.r.t. HPQCD's result, using $\mathrm{N}_{\mathrm{f}}=2+1$ HISQ valence quarks on rooted staggered MILC sea (based on $\mathrm{a}=0.15,0.12,0.09 \mathrm{fm}$, but consistent with adding $\mathrm{a} \approx 0.06,0.045 \mathrm{fm}$)
$F_{D}=207(4) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}=241(3) \mathrm{MeV} \quad$ combined χ \& continuum extrap.

Preliminary $\mathrm{N}_{\mathrm{f}}=2+1+1$ results by ETMC:

$$
F_{D}=204(3) \mathrm{MeV} \quad \mathrm{~F}_{\mathrm{D}_{\mathrm{s}}}=251(3) \mathrm{MeV} \quad \mathrm{~F}_{\mathrm{D}_{\mathrm{s}}} / \mathrm{F}_{\mathrm{D}}=1.230(6)
$$

- Wilson twisted mass fermions at maximal twist; $a=(0.079,0.060) \mathrm{fm}$
- Mixed action approach: Osterwalder-Seiler quarks in the valence sector
- Extrapolation of $\mathrm{F}_{\mathrm{D}_{s}} \sqrt{\mathrm{~m}_{\mathrm{D}_{s}}}$ to the physical point employing $\mathrm{SU}(2) \mathrm{HM} \mathrm{H}^{\mathrm{P}}$, where terms proportional to $a^{2} m_{D_{s}}^{2}, 1 / m_{D_{s}}$ are included
- Error is purely statistical, systematics not yet accounted for

$F_{D} \& F_{D_{s}}$ - The " $F_{D_{s}}$ puzzle" revisited

Discrepancy rose to 3.8σ in 2007 w.r.t. HPQCD's result, using $\mathrm{N}_{\mathrm{f}}=2+1$ HISQ valence quarks on rooted staggered MILC sea
(based on $a=0.15,0.12,0.09 \mathrm{fm}$, but consistent with adding $a \approx 0.06,0.045 \mathrm{fm}$)
$\mathrm{F}_{\mathrm{D}}=207(4) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}=241(3) \mathrm{MeV} \quad$ combined χ \& continuum extrap.
Update of $\mathrm{N}_{\mathrm{f}}=2+1$ results by FNAL \& MILC:
[Talk by J. Simone]
$\mathrm{F}_{\mathrm{D}}=220(8)(5) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}}=261(8)(5) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{D}_{\mathrm{s}}} / \mathrm{F}_{\mathrm{D}}=1.19(1)(2)$

- First error from statistics \& discretization, where extrapolation function incl. terms (with priors on coefficients) modelling heavy \& light cutoff effects
- Second error = combined other systematic error sources (taken in quadrature)

$F_{D} \& F_{D_{s}}$ - The " $F_{D_{s}}$ puzzle" revisited

Update of $\mathrm{N}_{\mathrm{f}}=2+1$ results by HPQCD:

$$
F_{D_{s}}=247(2) \mathrm{MeV}
$$

Some simulation / analysis features:

- Finer lattices: $a=(0.06,0.045) \mathrm{fm}$
- Accounts for scale re-determination
- Bayesian simultaneous fits
- Further new HISQ formalism studies:
\diamond hyperfine splitting
\diamond quark mass ratios $\bar{m}_{c} / \bar{m}_{s} \hookrightarrow \bar{m}_{s}$
\diamond HISQ with $m_{h} \rightarrow m_{b} \hookrightarrow \mathrm{~F}_{\mathrm{B}_{(\mathrm{s})}}$
\diamond heavy-light current-current CFs
[Talk by J. Koponen]
"Puzzle" seems to disappear:
No conclusive evidence for New Physics in the charm quark sector yet, but the $\mathrm{D}_{(\mathrm{s})}$ leptonic decays will continue to help constraining SM extensions

$\mathrm{F}_{\mathrm{B}} \& \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}$

- F_{B}
$-\underbrace{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \tau^{-} \bar{v}_{\tau}\right)}_{\begin{array}{c}\text { experiment } \\ \text { Process is sensitive probe of }\end{array}} \propto\left|\mathrm{V}_{\mathrm{ub}}\right|^{2} \underbrace{\mathrm{~F}_{\mathrm{B}}^{2}}_{\overline{\mathrm{u}}}$ charged Higgs boson effects
- $F_{B_{s}}$
- Relevant for CKM analysis \& BSM effects in $B_{s} \rightarrow \mu^{+} \mu^{-}$ (decay will be measured at LHCb)

$\mathrm{F}_{\mathrm{B}} \& \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}$

- F_{B}
$-\underbrace{\mathcal{B}\left(\mathrm{B}^{-} \rightarrow \tau^{-} \bar{v}_{\tau}\right)}_{\text {experiment }} \propto\left|\mathrm{V}_{\mathrm{ub}}\right|^{2} \underbrace{F_{B}^{2}}_{\text {lattic }}$
- Process is sensitive probe of charged Higgs boson effects
- $F_{B_{s}}$
- Relevant for CKM analysis \& BSM effects in $B_{s} \rightarrow \mu^{+} \mu^{-}$ (decay will be measured at LHCb)

Direct SM meas. by Belle '06: $\mathrm{F}_{\mathrm{B}}=229_{-31}^{+36}$ (stat) $)_{-37}^{+34}$ (syst)
\rightarrow few-\% at super-B factories?
1.9σ deviation of exp. determ. from LQCD (using $\left|\mathrm{V}_{\mathrm{ub}}\right|$ exclusive from the lattice)

Goal of lattice computations: $\mathrm{O}(10 \%) \rightarrow \mathrm{O}(3 \%)$ errors; better control of $a-$ and mass effects, NP renormalization

$\mathrm{F}_{\mathrm{B}} \& \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}$

Update of $\mathrm{N}_{\mathrm{f}}=2+1$ results by FNAL \& MILC:
$\mathrm{F}_{\mathrm{B}}=212(6)(6) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}=256(6)(6) \mathrm{MeV} \quad \mathrm{F}_{\mathrm{B}_{\mathrm{s}}} / \mathrm{F}_{\mathrm{B}}=1.21(1)(2)$

- $a \approx(0.09,0.12,0.15)$ fm MILC sea; partially quenched staggered χ PT fits
- Combination of perturbative \& NP renormalization
- First error from statistics \& discretization, where extrapolation function incl. terms (with priors on coefficients) modelling heavy \& light cutoff effects
- Second error = combined other systematic error sources (taken in quadrature)

- Experimental branching ratios \& (excl. \& incl.) average for $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to extract $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$

D-meson semi-leptonic decay form factors

- Independent determination of $\left|\mathrm{V}_{\mathrm{cs}}\right|,\left|\mathrm{V}_{\mathrm{cd}}\right|$; holds $\left|\mathrm{V}_{\mathrm{ud}}\right| \approx\left|\mathrm{V}_{\mathrm{cs}}\right|$ actually?
- $\left|\mathrm{V}_{\mathrm{cs}}\right|$ consistent with CKM unitarity requirement at the $\mathrm{O}(10 \%)$ level, but this is not stringent enough for precision CKM physics
- Differential rate for the decay

D $\rightarrow \pi \ell v_{\ell}$ for massless leptons

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}}{192 \pi^{3} m_{D}^{3}}\left[\left(m_{D}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}-4 m_{D}^{2} m_{\pi}^{2}\right]^{\frac{3}{2}}\left|f_{+}\left(q^{2}\right)\right|^{2}\left|V_{c d}\right|^{2}
$$

- Thus, either
$-\Gamma^{(\text {exp })} \& \operatorname{LQCD} \hookrightarrow\left|\mathrm{~V}_{\mathrm{cd}}\right|$
or
- $\Gamma^{(\exp)} \& C K M$ unitarity \hookrightarrow test of LQCD

D-meson semi-leptonic decay form factors

- Independent determination of $\left|\mathrm{V}_{\mathrm{cs}}\right|,\left|\mathrm{V}_{\mathrm{cd}}\right|$; holds $\left|\mathrm{V}_{\mathrm{ud}}\right| \approx\left|\mathrm{V}_{\mathrm{cs}}\right|$ actually?
- $\left|\mathrm{V}_{\mathrm{cs}}\right|$ consistent with CKM unitarity requirement at the $\mathrm{O}(10 \%)$ level, but this is not stringent enough for precision CKM physics
- Differential rate for the decay

D $\rightarrow \pi \ell v_{\ell}$ for massless leptons

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}}{192 \pi^{3} m_{D}^{3}}\left[\left(m_{D}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}-4 m_{D}^{2} m_{\pi}^{2}\right]^{\frac{3}{2}}\left|f_{+}\left(q^{2}\right)\right|^{2}\left|V_{c d}\right|^{2}
$$

- Thus, either
$-\Gamma^{(\text {exp })} \& L Q C D \hookrightarrow\left|V_{c d}\right|$
or
- $\Gamma^{(\exp)} \&$ CKM unitarity \hookrightarrow test of LQCD
- Also of interest w.r.t. the $\mathrm{F}_{\mathrm{D}_{s}}$ tension: Not obvious how to reconcile it with BSM physics, since SM leptonic D_{s} decay occurs at tree-level, though models with a charged Higgs or leptoquark could do but would lead to signals in $D_{s} \rightarrow K \ell \bar{v}_{\ell}$ decays
[Dobrescu \& Kronfeld, Kronfeld, 2008]

D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)
$\mathrm{D} \rightarrow \mathrm{K}$ form factor with HISQ charm \& light quarks

- $\mathrm{N}_{\mathrm{f}}=2+1 \mathrm{a} \approx(0.09,0.12) \mathrm{fm}$ MILC sea, HISQ for valence light \& c-quarks $\Rightarrow f_{0}\left(q^{2}\right), f_{+}(0)$ from scalar current via PCVC, without operator matching:

$$
q^{\mu}\left\langle V_{\mu}^{\text {lat }}\right\rangle Z=\left(m_{c}-m_{q}\right)\left\langle S^{\text {lat }}\right\rangle \quad f_{0}\left(q^{2}\right)=\frac{m_{c}-m_{q}}{m_{D}^{2}-m_{\pi}^{2}}\langle S\rangle, f_{+}(0)=f_{0}(0)
$$

- Bayesian fits of 3- \& 2-pt. functions and of chiral \& continuum extrapolations
$\mathrm{f}_{0}^{\mathrm{D} \rightarrow \mathrm{K}}$: coarse lattice

Note: At $\mathrm{E}_{\mathrm{K}}^{2} \approx 1 \mathrm{GeV}^{2}\left(\mathrm{q}^{2}=0\right)$ applicability of $\chi \mathrm{PT}$ appears questionable

D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)
$\mathrm{D} \rightarrow \mathrm{K}$ form factor with HISQ charm \& light quarks

- $\mathrm{N}_{\mathrm{f}}=2+1 \mathrm{a} \approx(0.09,0.12) \mathrm{fm}$ MILC sea, HISQ for valence light \& c-quarks $\Rightarrow f_{0}\left(q^{2}\right), f_{+}(0)$ from scalar current via PCVC, without operator matching:

$$
q^{\mu}\left\langle V_{\mu}^{\text {lat }}\right\rangle Z=\left(m_{c}-m_{q}\right)\left\langle S^{\text {lat }}\right\rangle \quad f_{0}\left(q^{2}\right)=\frac{m_{c}-m_{q}}{m_{D}^{2}-m_{\pi}^{2}}\langle S\rangle, f_{+}(0)=f_{0}(0)
$$

Preliminary result with full error budget:

$$
f_{+}\left(q^{2}=0\right)=0.753(12)(10)[(\text { stat })(\text { syst })] \quad\left|V_{\mathrm{cs}}\right|=0.954(10)(20) \quad[(\exp)(\text { lat })]
$$

D-meson semi-leptonic decay form factors

HPQCD, Na et al., arXiv:0910.3919 (Lattice 2009)
Talk by H. Na
$\mathrm{D} \rightarrow \mathrm{K}$ form factor with HISQ charm \& light quarks

$$
f_{+}(0) / F_{D_{s}}
$$

Future plans:

- D $\rightarrow \pi$ FF using the same method
- D semi-leptonic decay via the vector current with fully NP operator matching

D-meson semi-leptonic decay form factors

Status of $\mathrm{D} \rightarrow \pi$ for $\mathrm{N}_{\mathrm{f}}=2+1$ from FNAL \& MILC:

- $a \approx(0.09,0.12) \mathrm{fm}$ MILC ensembles, quadrupled statistics, Fermilab heavy quarks
- Overall normalization due to $\mathrm{Z}_{\mathrm{ab}}=\rho_{\mathrm{j}_{\mathrm{ab}}}\left[\mathrm{Z}_{\mathrm{Vaa}_{\mathrm{ab}}} \mathrm{Z}_{\mathrm{V}_{\mathrm{bb}}}\right]^{1 / 2}$ "blinded"
- Combined chiral (excluding $\left.\sqrt{2} \mathrm{E}_{\pi} /\left(4 \pi \mathrm{~F}_{\pi}\right)>1\right)$ \& continuum extrapolation
- Comparison of the shape of the form factor to CLEO-c $\left(\rightarrow f_{+}\left(q^{2}\right) / f_{+}\left(0.15 \mathrm{GeV}^{2}\right)\right.$ to remove blinding factor from f_{+}and $\left|V_{c d}\right|$ from CLEO)
\Rightarrow Statistical error $\left(\sim 5 \%\right.$ for $\left.f_{+}\left(0.15 \mathrm{GeV}^{2}\right)\right)$ and agreement are much better, but analysis of svstematics has to be awaited

$$
\text { Consistency check between lattice and experiment for } D->\pi
$$

D-meson semi-leptonic decay form factors

Preliminary $\mathrm{N}_{\mathrm{f}}=2$ results by ETMC:

- $\mathrm{a} \approx(0.1,0.079,0.063) \mathrm{fm}, \mathrm{m}_{\pi} \approx(500-270) \mathrm{MeV}$, controlled finite-size effects
- Ratios of 3- and 2-point functions s.th. Z-factors cancel
- Only slight interpolation necessary to bring the simulated c- and s-quark masses to their physical values before any chiral extrapolation
- Extrapolation to the physical point by combined fits to HMХPT formulae, down to $q^{2}=0$, adding allowed $\mathrm{LO} O\left(a^{2}\right)$ discretization effects to them
\Rightarrow Good agreement of LQCD with exp. determinations in common a^{2}-ranae

Preliminary:

$$
\begin{aligned}
& \mathrm{f}^{\mathrm{D} \rightarrow \pi}(0)=0.66(6)_{\text {stat }} \\
& \mathrm{f}^{\mathrm{D} \rightarrow \mathrm{~K}}(0)=0.76(4)_{\text {stat }}
\end{aligned}
$$

D-meson semi-leptonic decay form factors

Preliminary $\mathrm{N}_{\mathrm{f}}=2$ results by ETMC:

- $\mathrm{a} \approx(0.1,0.079,0.063) \mathrm{fm}, \mathrm{m}_{\pi} \approx(500-270) \mathrm{MeV}$, controlled finite-size effects
- Ratios of 3- and 2-point functions s.th. Z-factors cancel
- Only slight interpolation necessary to bring the simulated c-and s-quark masses to their physical values before any chiral extrapolation
- Extrapolation to the physical point by combined fits to HMxPT formulae, down to $q^{2}=0$, adding allowed $\mathrm{LO} \mathrm{O}\left(\mathrm{a}^{2}\right)$ discretization effects to them
\Rightarrow Good aareement of LQCD with exD. determinations in common a^{2} - ranae

B-meson semi-leptonic decay form factors

Status of $\mathrm{B} \rightarrow \mathrm{D}^{*} \ell v_{\ell}$ for $\mathrm{N}_{\mathrm{f}}=2+1$ from FNAL \& MILC: [Talk by A. Kronfeld]

- Determination of $\left|\mathrm{V}_{\mathrm{cb}}\right|$, which normalizes the whole UT
- ~2.3o tension between inclusive and exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$ (latter relying on $\mathrm{B} \rightarrow \mathrm{D}^{*} \ell v_{\ell}$ from FNAL \& MILC 2008)

$$
\chi^{2} / \mathrm{dof}=8.9 / 12, \mathrm{CL}=0.72
$$

- Zero recoil \Rightarrow just $\mathrm{F}(1) \equiv h_{\mathrm{A}}(1)$
- Double ratios of matrix elements: Cancellations of stat. errors and renormalization, left perturbative matching uncertainty small
- $a \approx(0.06-0.15) \mathrm{fm}$, quadrupled statistics
- $\mathrm{F}_{\text {blind }} \mathrm{F}(1)=$
0.8949(51)(88)(72)(93)(50)(30) (errors due to statistics, $\mathrm{g}_{\mathrm{D} * \mathrm{D} \pi}$, chiral extrapolation, HQ discretization errors, k-tuning, perturbative matching)

B-meson mixing parameters

Apex of the UT triangle constrained by ratio of meson oscillation frequencies

$$
\begin{aligned}
& \langle\bar{M}| \mathcal{O}_{\Delta M=2}|M\rangle=\frac{4}{3} m_{M}^{2} F_{M}^{2} B_{M} \\
& \langle 0| \bar{b} \gamma_{\mu} \gamma_{5} q\left|B_{q}\right\rangle=i p_{\mu} F_{B_{q}}, q=d, s \\
& \Delta m_{d} \propto F_{B_{d}}^{2} \widehat{B}_{B_{d}}\left|V_{t d} V_{t b}^{*}\right|^{2} \\
& \frac{\Delta m_{\mathrm{s}}}{\Delta m_{\mathrm{d}}} \propto \frac{\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}^{2} \widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{s}}}}{\mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}^{2} \widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{d}}}} \frac{\left|\mathrm{~V}_{\mathrm{tt}}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{td}}\right|^{2}} \equiv \xi^{2} \frac{\left|\mathrm{~V}_{\mathrm{ts}}\right|^{2}}{\left|\mathrm{~V}_{\mathrm{td}}\right|^{2}} \quad \xi: \mathrm{SU}(3) \text { breaking ratio }
\end{aligned}
$$

- If UT constraints from $\alpha, \gamma,\left|\mathrm{V}_{\mathrm{ub}}\right|$ are omitted, a (2-3) σ tension between constraints from $\epsilon_{k}, \Delta m_{s} / \Delta m_{d}, \sin (2 \beta)$ is observed
[Lunghi \& Soni, 2008]
- Degree of tension very sensitive to $\left|\mathrm{V}_{\mathrm{cb}}\right| \quad$ [Laiho, Van De Water \& Lunghi, 2009] \rightarrow leave one input as free parameter \& make prediction based on others

B-meson mixing parameters

RBC \& UKQCD, Albertus et al., arXiv:1001.2023
Feasibility study using $\mathrm{N}_{\mathrm{f}}=2+1$ DW sea and (APE \& HYP) smeared static quarks

- $a \approx 0.11 \mathrm{fm}, \mathrm{m}_{\pi}$ down to $\approx 430 \mathrm{MeV}$
- $\mathrm{O}\left(\alpha_{\mathrm{s}} \mathrm{pa}\right)$ improvement for the heavy-light decay constants
- NLO SU(2) HMxPT to extrapolate to the physical masses, which converges more rapidly if light valence and sea quark masses are sufficiently small

$$
\frac{\Phi_{\mathrm{B}_{\mathrm{s}}}}{\Phi_{\mathrm{B}_{1}}}=\mathrm{R}_{\Phi}\left\{1+\frac{1+3 \mathrm{~g}_{\mathrm{B} * \mathrm{~B} \pi}^{2}}{(4 \pi \mathrm{f})^{2}}\left(\frac{3}{4}\right) m_{\mathrm{L}}^{2} \ln \left(\frac{m_{\mathrm{L}}^{2}}{\Lambda_{\chi}^{2}}\right)+\mathrm{C}_{\mathrm{I}} \frac{2 \mathrm{~B} m_{\mathrm{l}}}{(4 \pi f)^{2}}\right\}
$$

B-meson mixing parameters

RBC \& UKQCD, Albertus et al., arXiv:1001.2023
Feasibility study using $\mathrm{N}_{\mathrm{f}}=2+1$ DW sea and (APE \& HYP) smeared static quarks

- $\mathrm{a} \approx 0.11 \mathrm{fm}, \mathrm{m}_{\pi}$ down to $\approx 430 \mathrm{MeV}$
- $\mathrm{O}\left(\alpha_{\mathrm{s}} \mathrm{pa}\right)$ improvement for the heavy-light decay constants

- Results including statistical and systematic uncertainties:

$$
\mathrm{F}_{\mathrm{B}_{\mathrm{s}}} / \mathrm{F}_{\mathrm{B}_{\mathrm{d}}}=1.15(12) \quad \xi=\mathrm{F}_{\mathrm{B}_{\mathrm{s}}} \sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{s}}}} / \mathrm{F}_{\mathrm{B}_{\mathrm{d}}} \sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{d}}}}=1.13(12)
$$

(chiral extrapolation and discretization errors dominate; $\mathrm{g}_{\mathrm{B} * \mathrm{~B} \pi} \hookrightarrow \mathrm{O}(3 \%)$)

- Extension to lighter d-quarks and larger volumes $24^{3}(a \approx 0.11 \mathrm{fm})$ and 32^{3} ($a \approx 0.08 \mathrm{fm}$) under way

B-meson mixing parameters

Related work in progress reported at the conference

- B-physics study with $\mathrm{N}_{\mathrm{f}}=2+1$ DW sea quarks and NP'ly tuned RHQ action for the heavy quarks by RBC \& UKQCD
[Talk by O. Witzel]
- Computation of $g_{B} * B \pi$ with $N_{f}=2+1$ DW sea and NP'ly tuned RHQ action for the heavy quarks by RBC \& UKQCD
[Talk P. Fritzsch]
- $\mathrm{B}^{0}-\overline{\mathrm{B}}_{\mathrm{q}}^{0}$ mixing calculation focusing on BSM contributions by FNAL \& MILC

$\mathrm{g}_{\mathrm{B} * \mathrm{~B} \pi}$

Matrix element for the strong decay $\mathrm{B}^{*} \rightarrow \mathrm{~B} \pi$:

$$
\left\langle B^{0}(p) \pi^{+}(q) \mid B^{*+}\left(p^{\prime}\right)\right\rangle \equiv-g_{B^{*} B \pi}\left(q^{2}\right) q_{\mu} \eta^{\mu}\left(p^{\prime}\right)(2 \pi)^{4} \delta\left(p^{\prime}-p-q\right)
$$

Relevance

- Related to the coupling g of heavy-light meson $\chi \mathrm{PT}(\mathrm{HM} \chi \mathrm{PT})$

$$
g \propto \lim _{m_{b} \rightarrow \infty, m_{d} \rightarrow 0} g_{B^{*} B \pi}
$$

\rightarrow the only LEC at leading order in $1 / m_{h l}$

- It constrains the chiral behaviour, e.g., of F_{B}, B_{B} and the $B \rightarrow \pi \ell v_{\ell}$ form factor
- LSZ-reduction of the pion and PCAC links $g_{\mathrm{B} * \mathrm{~B} \pi}$ in the static and chiral limits to the matrix element of the light axial current:

$$
g_{B^{*} \mathrm{~B} \pi}(0)=-\frac{1}{\mathrm{~F}_{\pi}} \mathrm{F}_{1}(0) \quad \mathrm{F}_{1}(0)=\langle\mathrm{B}(\mathrm{p})| A_{i}(0)\left|\mathrm{B}^{*}(\mathrm{p})\right\rangle
$$

$\mathrm{g}_{\mathrm{B} * \mathrm{~B} \pi}$

Matrix element for the strong decay $\mathrm{B}^{*} \rightarrow \mathrm{~B} \pi$:

$$
\left\langle B^{0}(p) \pi^{+}(q) \mid B^{*+}\left(p^{\prime}\right)\right\rangle \equiv-g_{B * B \pi}\left(q^{2}\right) q_{\mu} \eta^{\mu}\left(p^{\prime}\right)(2 \pi)^{4} \delta\left(p^{\prime}-p-q\right)
$$

Selection of previous results
$\mathrm{N}_{\mathrm{f}}=0$ lattice
and light cone QCD sum rules results
[compilation by Bećirević et al. @ Lattice 2005]
$\mathrm{N}_{\mathrm{f}}=2$ results:

- $\mathrm{g}^{\text {stat }}=0.516(5)_{\text {stat }}(31)_{\chi}(28)_{\mathrm{PT}}(28)_{\mathrm{a}}$
[Ohki et al, 2008]
- $\mathrm{g}^{\text {stat }}=0.44(3)_{-0.00}^{+0.07}$
[Bećirević et al. et al, 2009]

Static calculation - lattice 3-point functions pose technical challenges

- In 3-point functions $\mathrm{C}_{3}\left(\mathrm{t}, \mathrm{t}^{\prime} ; \mathrm{q}, \mathrm{p}\right)=\left\langle\mathcal{O}_{\mathrm{q}}(\mathrm{t}) \mathcal{O}\left(\mathrm{t}^{\prime}\right) \mathcal{O}_{\mathfrak{p}}^{\dagger}(0)\right\rangle$, two time separations t^{\prime} and $t-t^{\prime}$ have to be made large

$$
\frac{C_{3}(t, t / 2 ; p, p)}{C_{2}(t)}=\mathcal{M}(p, p)+O\left(e^{-(t / 2) \Delta E}\right)
$$

- 3-point function with summed insertion:
[Maiani et al., 1987]

$$
\begin{aligned}
\mathrm{D}(\mathrm{t} ; \mathrm{q}, \mathrm{p}) & \equiv \mathrm{a} \sum_{\mathrm{t}^{\prime}} \mathrm{C}_{3}\left(\mathrm{t}, \mathrm{t}^{\prime} ; \mathrm{q}, \mathrm{p}\right) \\
\Rightarrow \quad \partial_{\mathrm{t}} \frac{\mathrm{D}(\mathrm{t} ; \mathrm{q}, \mathrm{p})}{\sqrt{\mathrm{C}_{2}(\mathrm{t} ; \mathrm{p}) \mathrm{C}_{2}(\mathrm{t} ; \mathrm{q})}} & =\mathcal{M}(\mathrm{q}, \mathrm{p})+\mathrm{O}\left(\mathrm{t} \mathrm{e}^{-\mathrm{t} \Delta \mathrm{E}}\right)
\end{aligned}
$$

- Further computational details:
- HYP static actions to avoid exponential decay of signal-to-noise in t
- all-to-all light quark propagators (U(1) noise, full time dilution)
- Smeared light quark fields to reduce excited state contamination

$\mathrm{g}_{\mathrm{B}} * \mathrm{~B} \pi$

Quenched test:
ALPPAA, Bulava, Donnellan, Simma \& Sommer; talk by M. Donnellan precision, plateaux \& continuum limit

No discernible a-dependence at this 0.5% level

- $\beta=5.3, \mathrm{a} \approx 0.07 \mathrm{fm}, \mathrm{m}_{\pi} \approx 250 \mathrm{MeV} \quad$ [Scale setting preliminary; talk by B. Leder]

- Chiral extrapolation linear in m_{π}^{2} or via HMXPT formula [Fajfer \& Kamenik, 2006]

$$
g=g_{0}\left\{1-\frac{4 g_{0}^{2}}{(4 \pi f)^{2}} m_{\pi}^{2} \ln ^{2}\left(m_{\pi}\right)+c_{0} m_{\pi}^{2}\right\}
$$

Non-perturbative HQET in two-flavour QCD

Collaboration

B. Blossier, J. Bulava, M. Della Morte, M. Donnellan, P. Fritzsch, N. Garron,
J. H., G.M. von Hippel, N. Tantalo, H. Simma, R. Sommer

- Non-perturbative formulation of HQET
- Strategy to determine HQET parameters at $\mathrm{O}(1 / \mathrm{m})$
- First physical results in the two-flavour theory

Scale, light quark masses from light sector: F. Knechtli, B. Leder, S. Schaefer, F. Virotta
$\frac{C I S}{b a s e d}$

Non-perturbative formulation of HQET

Action: $S_{\text {HQET }}(x)=a^{4} \sum_{x} \mathcal{L}_{\text {HQET }}(x)$ for the b-quark (zero velocity HQET)
[Eichten, 1988; Eichten \& Hill, 1990]

$$
\begin{aligned}
\mathcal{L}_{\text {HQET }}(x) & =\mathcal{L}_{\text {stat }}(x)-\omega_{\text {kin }} \mathcal{O}_{\text {kin }}(x)-\omega_{\text {spin }} \mathcal{O}_{\text {spin }}(x) \\
\mathcal{L}_{\text {stat }}(x) & =\bar{\psi}_{h}(x)\left[D_{0}+m_{\text {bare }}\right] \psi_{h}(x) \quad \frac{1}{2}\left(1+\gamma_{0}\right) \psi_{h}(x)=\psi_{h}(x) \\
\mathcal{O}_{\text {kin }}(x) & =\bar{\psi}_{h}(x) \mathbf{D}^{2} \psi_{h}(x)
\end{aligned}
$$

\rightarrow kinetic energy from heavy quark's residual motion

$$
\mathcal{O}_{\text {spin }}(x)=\bar{\psi}_{h}(x) \boldsymbol{\sigma} \cdot \mathbf{B} \psi_{h}(x)
$$

\rightarrow chromomagnetic interaction with the gluon field

Composite fields: axial current, related to the B-meson decay constant $\mathrm{F}_{\mathrm{B}} \sqrt{\mathrm{m}_{\mathrm{B}}}=\langle\mathrm{B}(\mathbf{p}=0)| A_{0}(0)|0\rangle$, where $A_{0}=\bar{\psi}_{1} \gamma_{0} \gamma_{5} \psi_{\mathrm{b}} \rightarrow A_{0}^{\mathrm{HQET}}$

$$
\begin{aligned}
A_{0}^{\mathrm{HQET}}(x) & =Z_{A}^{\mathrm{HQET}}\left[A_{0}^{\text {stat }}(x)+c_{A}^{\mathrm{HQET}} \delta A_{0}^{\text {stat }}(x)\right] \\
A_{0}^{\text {stat }}(x) & =\bar{\psi}_{1}(x) \gamma_{0} \gamma_{5} \psi_{\mathrm{h}}(x) \\
\delta A_{0}^{\text {stat }}(x) & =\bar{\psi}_{1}(x) \frac{1}{2}\left(\overleftarrow{\nabla}_{\mathfrak{i}}+\overleftarrow{\nabla}_{i}^{*}\right) \gamma_{\mathrm{i}} \gamma_{5} \psi_{\mathrm{h}}(x)
\end{aligned}
$$

$\underline{E V s}=$ Functional integral representation at the quantum level:

$$
\langle\mathrm{O}\rangle=\frac{1}{z} \int \mathcal{D}[\varphi] \mathrm{O}[\varphi] \mathrm{e}^{-\left(S_{\text {rel }}+S_{\text {HQET }}\right)} \quad z=\int \mathcal{D}[\varphi] \mathrm{e}^{-\left(S_{\text {rel }}+S_{\text {HQET }}\right)}
$$

Instead of including the NLO term in $1 / \mathrm{m}$ of $\mathcal{L}_{\text {HQET }}$ in the action (as this theory wouldn't be renormalizable), the FI weight is expanded in a power series in $1 / \mathrm{m}$

$$
\begin{aligned}
\exp \{ & \left.-S_{\text {HQET }}\right\}= \\
& \exp \left\{-a^{4} \Sigma_{x} \mathcal{L}_{\text {stat }}(x)\right\} \\
& \times\left\{1-a^{4} \Sigma_{x} \mathcal{L}^{(1)}(x)+\frac{1}{2}\left[a^{4} \Sigma_{x} \mathcal{L}^{(1)}(x)\right]^{2}-a^{4} \Sigma_{x} \mathcal{L}^{(2)}(x)+\ldots\right\} \\
\Rightarrow\langle O\rangle= & \frac{1}{\mathcal{Z}} \int \mathcal{D}[\varphi] \mathrm{e}^{-S_{\text {rel }}-a^{4} \Sigma_{x} \mathcal{L}_{\text {stat }}(x)} O\left\{1-a^{4} \Sigma_{x} \mathcal{L}^{(1)}(x)+\ldots\right\}
\end{aligned}
$$

Important implications of this definition of HQET

- $1 / m$-terms appear only as insertions of local operators in CFs
\Rightarrow Power counting: Renormalizability at any given order in $1 / \mathrm{m}$
$0 \Leftrightarrow$ Existence of the continuum limit with universality
- Effective theory $=$ Continuum asymptotic expansion in $1 / \mathrm{m}$ of QCD

Renormalization \& Matching

Renormalization

- The mixing of operators of different dimension in $\mathcal{L}_{\text {HQET }}$ induces power divergences
$\rightarrow \mathcal{L}_{\text {stat }}$: linearly divergent additive mass renormalization $\delta \mathrm{m}$ originates from mixing of $\bar{\psi}_{h} D_{0} \psi_{h}$ with $\bar{\psi}_{h} \psi_{h} \Rightarrow E_{h, \bar{h}}^{Q C D}=\left.E_{h, \bar{h}}^{\text {stat }}\right|_{\delta m=0}+m_{\text {bare }}$

$$
m_{\text {bare }}=\delta m+m, \delta m=\frac{c\left(g_{0}\right)}{a} \sim e^{1 /\left(2 b_{0} g_{0}^{2}\right)} \times\left\{c_{1} g_{0}^{2}+c_{2} g_{0}^{4}+\ldots\right\}
$$

\rightarrow PT: uncertainty $=$ truncation error $\sim e^{1 /\left(2 b_{0} g_{0}^{2}\right)} c_{n+1} g_{0}^{2 n+2} \xrightarrow{g_{0} \rightarrow 0} \infty$!
\Rightarrow Non-perturbative $c\left(\mathrm{~g}_{0}\right)$ needed, i.e., NP renormalization of HQET (resp. fixing of its parameters) required for the continuum limit to exist

- Power-law divergences even worse at the level of $1 / m$-corrections: $a^{-1} \rightarrow a^{-2}$ (e.g., δm picks up a contribution $a^{-2} \omega_{\text {kin }}$)
Matching
- The finite parts of renormalization constants must be fixed s.th. the effective theory describes the underlying theory, QCD
- Proper conditions for these must be imposed from QCD with finite m_{b}

Mass dependence at leading order in $1 / m$

The rôle of perturbative anomalous dimensions

Consider matrix elements of composite fields involving b-quarks as, e.g., obtained from a QCD correlation function of the heavy-light axial current

$$
\begin{aligned}
C_{A A}^{Q C D}\left(x_{0}\right) & =Z_{A}^{2} a^{3} \sum_{x}\left\langle A_{0}(x)\left(A_{0}\right)^{\dagger}(0)\right\rangle_{Q C D} \\
{\left[\Phi^{Q C D}\right]^{2} } & \left.\equiv F_{B}^{2} m_{B}=\left|\langle B| Z_{A} A_{0}\right| 0\right\rangle\left.\right|^{2} \\
& =\lim _{x_{0} \rightarrow \infty}\left[2 \exp \left\{x_{0} m_{B}^{\text {eff }}\left(x_{0}\right)\right\} C_{A A}^{Q C D}\left(x_{0}\right)\right]
\end{aligned}
$$

- B-meson state dominates spectral representation of $C_{A A}^{Q C D}$ at large x_{0}
- $Z_{A}\left(g_{0}\right)$ fixed by chiral Ward identities, renormalization scale independent In the static approximation this translates into

$$
\left.[\Phi(\mu)]^{2}=\left|\langle B| Z_{A}^{\text {stat }} \mathcal{A}_{0}^{\text {stat }}\right| 0\right\rangle\left.\right|^{2}=\lim _{x_{0} \rightarrow \infty}\left[2 \exp \left\{x_{0} E_{\text {stat }}^{\text {eff }}\left(x_{0}\right)\right\} C_{A A}^{\text {stat }}\left(x_{0}\right)\right]
$$

- μ-dependence in $Z_{A}\left(g_{0}, a \mu\right)=1+g_{0}^{2}\left[B_{0}-\gamma_{0} \ln (a \mu)\right]+O\left(g_{0}^{4}\right)$
- Better alternative: work with the RGI opertator $\left(A_{R G I}^{\text {stat }}\right)_{0}$

How does one get from $\Phi_{R G I}=Z_{A, R G I}^{\text {stat }}\langle B| A_{0}^{\text {stat }}|0\rangle$ to F_{B} ?

Generic structure of the HQET-expansion of QCD matrix elements
$\Phi=\langle\mathrm{B}| A_{0}|0\rangle: \quad \Phi^{\mathrm{QCD}} \equiv \mathrm{F}_{\mathrm{B}} \sqrt{m_{\mathrm{B}}}=\underbrace{\mathrm{C}_{\mathrm{PS}}\left(M_{\mathrm{b}} / \Lambda\right)} \times \underbrace{\Phi_{\mathrm{RG}}}+\mathrm{O}\left(1 / M_{\mathrm{b}}\right)$ conversion function RGI matrix element \Leftarrow renormalization in effective theory

- In HQET: Absence of chiral symmetry as it is met in (massless) QCD implies a scale dependence $\quad \Phi^{\text {stat }}(\mu) \equiv Z_{A}^{\text {stat }}(\mu)\langle\mathrm{B}|{A_{0}^{\text {stat }}|0\rangle}^{0}$
- $M_{b}=$ scale \& scheme independent (RG-invariant) b-quark mass

Choosing a convenient scale $\left(\mu=m_{\star}=\bar{m}\left(m_{\star}\right), g_{\star}=\overline{\mathrm{g}}\left(\mathrm{m}_{\star}\right)\right)$, CPS can be parametrized in terms of $R G$ invariants Λ, M :
$\Phi^{Q C D}=C_{P S}(M / \Lambda) \times \Phi_{\mathrm{RGI}}, C_{P S}(M / \Lambda)=\exp \left\{\int^{g_{\star}\left(\frac{M}{\Lambda}\right)} \mathrm{d} x \frac{\gamma^{\text {match }}(x)}{\beta(x)}\right\}$
To evaluate $C_{P S}$, insert $\gamma^{\text {match }}\left(g_{\star}\right) \xrightarrow{g_{\star} \rightarrow 0}-\gamma_{0} g_{\star}^{2}-\gamma_{1}^{\text {match }} g_{\star}^{4}-\gamma_{2}^{\text {match }} g_{\star}^{6}+\ldots$
\Rightarrow leading large-mass behaviour via $\left.\frac{M}{\Phi} \frac{\partial \Phi}{\partial M}\right|_{\Lambda}=\left.\frac{M}{C_{P S}} \frac{\partial C_{P S}}{\partial M}\right|_{\Lambda}=\frac{\gamma^{\text {match }}\left(g_{\star}\right)}{1-\tau\left(g_{\star}\right)}$:

$$
C_{P S} \stackrel{M \rightarrow \infty}{\sim}\left(2 b_{0} g_{\star}^{2}\right)^{-\gamma_{0} /\left(2 b_{0}\right)} \sim[\log (M / \Lambda)]^{\gamma_{0} /\left(2 b_{0}\right)}
$$

$\mathrm{C}_{\text {PS }}$ perturbatively under control?
[3-loop AD by Chetyrkin \& Grozin, 2003]

$\mathrm{N}_{\mathrm{f}}=0$

- Full (logarithmic) mass dependence $\in C_{P S}$
- Fig. seems to indicate that the remaining $\mathrm{O}\left(\bar{g}^{6}\left(\mathrm{~m}_{\mathrm{b}}\right)\right)$ errors are relatively small \rightarrow however: a premature conclusion . . .
- For B-Physics: $\Lambda_{\overline{\mathrm{MS}}} / \mathrm{M}_{\mathrm{b}} \approx 0.04$

An application $\left(\mathrm{N}_{\mathrm{f}}=0\right)$

Interpolation between the static limit and the charm region

Della Morte, Dürr, Guazzini, H., Jüttner \& Sommer, JHEP0802(2008)078 Blossier, Della Morte, Garron, von Hippel, Mendes, Simma \& Sommer, in preparation

Looks good: under a reasonable smoothness assumption, interpolate the mass dependence (linearly) in the inverse PS mass to the physical point:

- $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$ follows the heavy quark scaling law, no $1 /\left(\mathrm{r}_{0} \mathrm{~m}_{\mathrm{Ps}}\right)^{2}$ - effects are visible $\rightarrow 1 / \mathrm{m}$-expansion appears to work very well even for charm quarks
\leftarrow surprising; needs further confirmation, as the perturbative C_{PS} is used
- Question: What is the accuracy of perturbation theory involved in this?

Accuracy of perturbation theory in the matching

Bekavac, Grozin, Marquard, Piclum, Seidel \& Steinhauser, NPB833(2010)46
From a recent 3-loop computation of $\gamma_{\Gamma}^{\text {match }}$, ratios of conversion functions (such as $\mathrm{C}_{\mathrm{PS} / \mathrm{V}}=\mathrm{C}_{\mathrm{PS}} / \mathrm{C}_{\mathrm{V}}$) are now known to 4-loop precision
\Rightarrow Outcome: PT is badly behaved for beauty and even worse for charm
"We find that the perturbative series for $\mathrm{f}_{\mathrm{B}^{*}} / \mathrm{f}_{\mathrm{B}}$ and $\mathrm{f}_{\mathrm{B}^{*}}^{\top} / \mathrm{f}_{\mathrm{B}^{*}}$ converge very slowly at best."
[quote from Bekavac at al., 2010]

Accuracy of perturbation theory in the matching

Bekavac, Grozin, Marquard, Piclum, Seidel \& Steinhauser, NPB833(2010)46
From a recent 3-loop computation of $\gamma_{\Gamma}^{\text {match }}$, ratios of conversion functions (such as $C_{P S} / V=C_{P S} / C_{V}$) are now known to 4-loop precision
\Rightarrow Outcome: PT is badly behaved for beauty and even worse for charm
"We find that the perturbative series for $\mathrm{f}_{\mathrm{B}^{*}} / \mathrm{f}_{\mathrm{B}}$ and $\mathrm{f}_{\mathrm{B}^{*}}^{\top} / \mathrm{f}_{\mathrm{B}^{*}}$ converge very slowly at best."
[quote from Bekavac at al., 2010]
Freedom to "optimize" the scale:
[R. Sommer, private communication]

$$
\mu=s^{-1} m_{\star}=\bar{m}\left(m_{\star}\right), \hat{g}=\bar{g}\left(s^{-1} m_{\star}\right) \quad C_{\Gamma}(M / \Lambda)=\exp \left\{\int^{\hat{g}} d x \frac{\hat{\gamma}_{\Gamma}^{m a t c h}(x)}{\beta(x)}\right\}
$$

- Matching below m_{\star}, i.e., expect $s>1$ is better, s.th. decrease of terms in perturbative series is improved once $s \gtrsim 4$
- However: $\alpha\left(m_{b} / 4\right)$ is not small then, series unreliable again
- Effective scale is well below $\mu=m_{b}$; asymptotic convergence of PT only improved far beyond m_{b}, where it is of limited use for B-physics
\Rightarrow Accuracy is hard to assess, error estimates in the literature too optimistic?

Mass dependence in finite-volume QCD $\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Non-perturbative computation of the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume QCD
\rightarrow Explicit pure theory tests that HQET is an effective theory of QCD
\rightarrow Constraining the large-mass behaviour of QCD by the static limit

- QCD with Schrödinger Functional boundary conditions (T, L, θ)
- $\mathrm{N}_{\mathrm{f}}=2$ NP'ly $\mathrm{O}(\mathrm{a})$ improved Wilson action, massless sea quarks
- Evaluation of QCD heavy-light valence quark correlation functions with relativistic heavy quarks from charm to beyond bottom (in SF simulations: set light PCAC masses to zero, $m_{\text {light }}^{\text {valence }}=m^{\text {sea }}=0$)
- Renormalization

$\rightarrow \operatorname{Fix} \overline{\mathrm{g}}^{2}\left(\mathrm{~L}_{1}\right)=4.484$ s.th. $\mathrm{L}_{1} \approx 0.5 \mathrm{fm}, \mathrm{L}_{1} / \mathrm{a}=20,24,32,40, \mathrm{~L}_{2}=2 \mathrm{~L}_{1}$
- Fix RGI (heavy) quark masses via its NP relation to bare parameters:

$$
z \equiv L_{1} M=Z_{m} \frac{M}{\bar{m}\left(\mu_{0}\right)}\left(1+b_{m} a m_{q}\right) \times L_{1} m_{q} \quad Z_{m}=\frac{Z\left(g_{0}\right) Z_{A}\left(g_{0}\right)}{Z_{p}\left(g_{0}, a \mu_{0}\right)}
$$

Mass dependence in finite-volume QCD $\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Della Morte, Fritzsch, H. \& Sommer, PoS LATTICE2008(2008)226
Fritzsch \& H., in progress
The B-system in finite-volume QCD $\left(\mathrm{L}=\mathrm{L}_{1}\right)$

- $\mathrm{L}_{1}=0.5 \mathrm{fm}, z$-values covering the b-quark down to the charm quark region
- Removal of all $\mathrm{O}\left(\left(\frac{\mathrm{a}}{\mathrm{L}}\right)^{\mathrm{n}}\right)$ effects at tree-level: $\mathrm{O} \rightarrow \mathrm{O}_{\text {impr }}(\mathrm{a} / \mathrm{L})=\frac{\mathrm{O}(\mathrm{a} / \mathrm{L})}{1+\delta(\mathrm{a} / \mathrm{L})}$
- Examples of continuum extrapolations (B-meson mass \& decay constant):

Mass dependence in finite-volume $\mathbf{Q C D}\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Della Morte, Fritzsch, H. \& Sommer, PoS LATTICE2008(2008)226
Fritzsch \& H., in progress
The B-system in finite-volume QCD $\left(\mathrm{L}=\mathrm{L}_{1}\right)$

- Tests of HQET: validating and demonstrating the applicability of HQET
- Verification of the approach to the spin-symmetric limit: (B-meson mass \& ratio of PS to V decay constants)

\Rightarrow Large-mass asymptotics $(1 / z \rightarrow 0)$ confirms HQET predictions

Mass dependence in finite-volume QCD $\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Della Morte, Fritzsch, H. \& Sommer, PoS LATTICE2008(2008)226 The B-system in finite-volume QCD $\left(\mathrm{L}=\mathrm{L}_{1}\right)$

- But: some numerical evidence for the previous doubts in the reliability of PT in the b-quark region is found with $Y_{P S}, Y_{V}$ and its effective theory predictions

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{PS}}(\mathrm{~L}, z) / \mathrm{C}_{\mathrm{PS}}(\mathrm{M} / \Lambda)=\mathrm{X}_{\mathrm{RGI}}(\mathrm{~L})+\mathrm{O}(1 / z) \\
& Y_{P S}(L, z ; \theta) \propto Z_{A} \frac{f_{A}(L / 2, \theta)}{\sqrt{f_{1}(\theta)}} \quad X_{R G I}(L ; \theta) \propto Z_{A, R G I}^{\text {stat }} \underbrace{\underbrace{f_{A}^{\text {stat }}(L / 2, \theta)}_{A}}_{=X^{\text {stat }}(\theta)} \frac{f_{1}^{\text {stat }}(\theta)}{\text { sen }}
\end{aligned}
$$

Mass dependence in finite-volume QCD $\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Della Morte, Fritzsch, H. \& Sommer, PoS LATTICE2008(2008)226
The B-system in finite-volume QCD $\left(\mathrm{L}=\mathrm{L}_{1}\right)$

- But: some numerical evidence for the previous doubts in the reliability of PT in the b-quark region is found with $Y_{P S}, Y_{V}$ and its effective theory predictions

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{PS}}(\mathrm{~L}, z) / C_{\mathrm{PS}}(M / \Lambda)=X_{\mathrm{RGI}}(\mathrm{~L})+\mathrm{O}(1 / z) \\
& \mathrm{Y}_{\mathrm{PS}}(\mathrm{~L}, z ; \theta) \propto Z_{\mathrm{A}} \frac{f_{\mathrm{A}}(\mathrm{~L} / 2, \theta)}{\sqrt{f_{1}(\theta)}} X_{\mathrm{RGI}}(\mathrm{~L} ; \theta) \propto Z_{\mathrm{A}, \mathrm{RGI}}^{\text {stat }} \\
& \underbrace{\frac{f_{A}^{\text {stat }}(\mathrm{L} / 2, \theta)}{\sqrt{f_{1}^{\text {stat }}(\theta)}}}_{=X^{\text {stat }}(\theta)}
\end{aligned}
$$

Mass dependence in finite-volume QCD $\left(\mathrm{N}_{\mathrm{f}}=2\right)$

Della Morte, Fritzsch, H. \& Sommer, PoS LATTICE2008(2008)226
The B-system in finite-volume QCD $\left(\mathrm{L}=\mathrm{L}_{1}\right)$
Fritzsch \& H., in progress

- Consider ratios instead, where CpS cancels completely:

$$
\frac{Y_{\mathrm{PS}}\left(z ; \theta_{1}\right)}{Y_{\mathrm{PS}}\left(z ; \theta_{2}\right)}=\frac{X^{\text {stat }}\left(\theta_{1}\right)}{X^{\text {stat }}\left(\theta_{2}\right)}+\mathrm{O}(1 / z)
$$

\Rightarrow These turn smoothly \& unconstrained into effective theory predictions

Determination of HQET parameters at $\mathrm{O}(1 / \mathrm{m})$

Blossier, Della Morte, Garron \& Sommer, arXiv:1001.4783
Vector of the $\mathrm{N}_{\text {HQET }}=5$ parameters in $S_{\text {HQET }}, A_{0}^{\text {HQET }}$ up to $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$:

ω	$=$	$\binom{\omega^{\text {stat }}}{\omega^{(1 / m)}}$	ω_{i}	classical value	static value
			$m_{\text {bare }}$	m_{b}	$\mathrm{m}_{\text {bare }}^{\text {stat }}$
$\omega^{\text {stat }}$	$=$	$\left(m_{\text {bare }}, \ln \left(Z_{A}^{\mathrm{HQET}}\right)\right)^{\mathrm{t}}$	$\begin{aligned} & \ln \left(Z_{A}^{\mathrm{HQET}}\right) \\ & c_{\mathrm{A}}^{\mathrm{HQET}} \end{aligned}$	$\begin{gathered} 0 \\ -1 /\left(2 m_{b}\right) \end{gathered}$	$\begin{gathered} \ln \left(Z_{A, R G I}^{\text {stat }} C_{P S}\right) \\ {a c_{A}^{s t a t}}_{\text {stat }} \end{gathered}$
$\omega^{(1 / m)}$		$\left(c_{A}^{\text {HQET }}, w_{\text {kin }}, \omega_{\text {spin }}\right)^{t}$	$\omega_{\text {kin }}$ $\omega_{\text {spin }}$	$\begin{aligned} & 1 /\left(2 m_{b}\right) \\ & 1 /\left(2 m_{b}\right) \end{aligned}$	0

\Rightarrow Trick: non-perturbative matching of HQET to QCD in a finite volume [H. \& Sommer, JHEP0402(2004)022]

QCD

NP matching in $\mathrm{L}=\mathrm{L}_{1}$

Suitable observables in the Schrödinger functional, $\mathrm{L}=\mathrm{T}=\mathrm{L}_{1} \approx 0.5 \mathrm{fm}$

$$
\Phi_{i}\left(L_{1}, M, a\right) \quad i=1, \ldots, N_{\text {HQET }}
$$

Matching conditions for $i=1, \ldots, N_{\text {HQET }}$ (note: $a \leftrightarrow g_{0}$)

$$
\lim _{a \rightarrow 0} \Phi_{i}^{Q C D}\left(L_{1}, M, a\right)=\Phi_{i}^{Q C D}\left(L_{1}, M, 0\right)=\Phi_{i}^{\mathrm{HQET}}\left(L_{1}, M, a\right)
$$

Conveniently, one chooses observables linear in ω_{i}, e.g.

$$
\Phi(L, M, a)=\eta(L, a)+\phi(L, a) \omega(M, a)
$$

$$
\begin{array}{lcr}
\Phi_{1}= & \mathrm{L}\langle\mathrm{~B}(\mathrm{~L})| \mathbb{H}|\mathrm{B}(\mathrm{~L})\rangle \stackrel{\mathrm{L} \rightarrow \infty}{\sim} & \mathrm{Lm}_{\mathrm{B}} \\
\Phi_{2}=\ln \left(\mathrm{L}^{3 / 2}\langle\Omega(\mathrm{~L})| A_{0}|\mathrm{~B}(\mathrm{~L})\rangle\right) \stackrel{\mathrm{L} \rightarrow \infty}{\sim} & \ln \left(\mathrm{~L}^{3 / 2} \mathrm{~F}_{\mathrm{B}} \sqrt{\mathrm{~m}_{\mathrm{B}} / 2}\right)
\end{array}
$$

$$
\eta=\binom{\Gamma^{\text {stat }}=\langle B(\mathrm{~L})| \mathbb{H}|\mathrm{B}(\mathrm{~L})\rangle_{\text {stat }}}{\zeta_{\mathrm{A}}=\ln \left(\mathrm{L}^{3 / 2}\langle\Omega(\mathrm{~L})| A_{0}|\mathrm{~B}(\mathrm{~L})\rangle_{\text {stat }}\right)}
$$

$$
\phi=\left(\begin{array}{ccc}
\mathrm{L} & 0 & \cdots \\
0 & 1 & \cdots \\
\cdots & &
\end{array}\right)
$$

Step scaling to $\mathrm{L}=\mathrm{L}_{2}$

Matching volume $L_{1} \approx 0.5 \mathrm{fm}$ has very small a , but larger a are needed
\Rightarrow Gap to large volume \& practicable lattice spacings, where physical quantities $\left(m_{B}, F_{B}\right)$ are extracted, bridged by finite-size scaling steps

Fully NP, CL can be taken everywhere, $L \rightarrow 2 \mathrm{~L}$ via Step Scaling Functions

$$
\Phi_{i}^{\mathrm{HQET}}(2 \mathrm{~L})=\sigma_{i}\left(\left\{\Phi_{j}^{\mathrm{HQET}}(\mathrm{~L}), j=1, \ldots, \mathrm{~N}_{\mathrm{HQET}}\right\}\right) \quad 2 \mathrm{~L}=2 \mathrm{~L}_{1} \approx 1.0 \mathrm{fm}
$$

Step scaling to $\mathrm{L}=\mathrm{L}_{2}$

Finite-size scaling to $\mathrm{L}_{2}=2 \mathrm{~L}_{1}$:

- Amounts to solve a matrix equation to obtain the HQET parameters at larger lattice spacings ...
- ...corresponding to β-values for simulations in large volume, " L_{∞} ", where a B-meson in HQET fits comfortably

Computational setup

- Convenient finite-volume framework: QCD Schrödinger Functional
[Lüscher et al., 1992; Sint, 1994]
\exists HQET expansions of (renormalized) SF CFs up to first order in $1 / \mathrm{m}$, including $m_{\text {bare }}, Z_{A}^{\text {HQET }}$ and insertions $c_{A}^{\text {HQET }} \delta A_{0}^{\text {stat }}, \omega_{\text {kin }} \mathcal{O}_{\text {kin }}, \omega_{\text {spin }} \mathcal{O}_{\text {spin }}$
- High numerical accuracy of NP HQET thanks to technical advances:

LxLxL
$f_{\mathrm{A}}^{\text {stat }}\left(\mathrm{x}_{0}\right)=$

LxLxL

- HYP-smeared static actions, giving improved statistical precision [Hasenfratz \& Knechtli, 2001; 䛨LPHA 2004/05]
\rightarrow this change of action does not introduce large cutoff effects
- In large V, evaluate them solving the Generalized EigenValue Problem:
[Michael \& Teasdale, 1983; Lüscher \& Wolff, 1990; A Alpha , Blossier et al., 2009] Analysis of matrix correlators s.th. a larger gap dominates the excited state corrections and these disappear more quickly with growing x_{0}

$$
E_{n}^{e f f}\left(t, t_{0}\right)=E_{n}+\beta_{n}\left(t_{0}\right) e^{-\left(E_{N+1}-E_{n}\right) t}
$$

Use of the HQET parameters

These HQET parameters can finally be exploited for phenomenological applications in the $\mathrm{B}_{(\mathrm{s})}$ - meson system, e.g.

- to calculate the b-quark mass and the $\mathrm{B}_{(\mathrm{s})}$-meson decay constant:

$$
\begin{aligned}
m_{B}= & m_{\text {bare }}+E_{\text {stat }}+\omega_{\text {kin }} E_{\text {kin }}+\omega_{\text {spin }} E_{\text {spin }} \\
\frac{\Phi}{\sqrt{2}} \equiv F_{B} \sqrt{m_{B} / 2}= & Z_{A}^{H Q E T}\left(1+b_{A}^{\text {stat }} a m_{q}\right) p_{\text {stat }} \\
& \times\left(1+c_{A}^{H Q E T} p_{\delta A}+w_{\text {kin }} p_{\text {kin }}+\omega_{\text {spin }} p_{\text {spin }}\right)
\end{aligned}
$$

- Mass splittings, such as (radial) excitation energies of $\mathrm{B}_{(\mathrm{s})}$-states and the $\mathrm{B}_{(\mathrm{s})}-\mathrm{B}_{(\mathrm{s})}^{*}$ mass difference to $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$:
$\Delta \mathrm{E}_{n, 1}^{\text {HQET }}=\left(\mathrm{E}_{\text {stat }}^{n}-\mathrm{E}_{\text {stat }}^{1}\right)+\omega_{\text {kin }}\left(\mathrm{E}_{\text {kin }}^{n}-\mathrm{E}_{\text {kin }}^{1}\right)+\omega_{\text {spin }}\left(\mathrm{E}_{\text {spin }}^{n}-\mathrm{E}_{\text {spin }}^{1}\right)$ $\Delta \mathrm{E}_{\mathrm{P}-\mathrm{V}}=\frac{4}{3} \omega_{\text {spin }} \mathrm{E}_{\text {spin }}^{1}$
$E_{y}^{i}, p_{y}: \quad$ plateau averages of (bare) effective
- Note: The power-divergent $\delta \mathrm{m}$ drops out in energy differences

Some examples of $N_{f}=0$ results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma \& Sommer, arXiv:1004.2661
Excited state energy levels, $a \approx(0.1,0.08,0.05) \mathrm{fm}, \mathrm{L} \approx 1.5 \mathrm{fm}, \mathrm{T}=2 \mathrm{~L}$

- CF matrices $C_{i j}^{\text {stat }}(\mathrm{t})=\sum_{x, y}\left\langle\mathrm{O}_{i}\left(x_{0}+\mathrm{t}, \mathrm{y}\right) \mathrm{O}_{j}^{*}(x)\right\rangle_{\text {stat }}$ \& $\mathcal{O}_{\text {spin/kin }}$ insertions
- GEVP: all-to-all propagators, t-dilution, Gaussian smeared variational basis

Some examples of $N_{f}=0$ results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma \& Sommer, arXiv:1004.2661

Excited state energy levels, $a \approx(0.1,0.08,0.05) \mathrm{fm}, \mathrm{L} \approx 1.5 \mathrm{fm}, \mathrm{T}=2 \mathrm{~L}$

- CF matrices $C_{i j}^{\text {stat }}(\mathrm{t})=\sum_{x, y}\left\langle\mathrm{O}_{i}\left(x_{0}+\mathrm{t}, \mathrm{y}\right) \mathrm{O}_{j}^{*}(x)\right\rangle_{\text {stat }}$ \& $\mathcal{O}_{\text {spin/kin }}$ insertions
- GEVP: all-to-all propagators, t-dilution, Gaussian smeared variational basis

- Linear a-term suppressed by $1 / \mathrm{m}_{\mathrm{b}}$, physical $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}\right)$ corrections are small
- Divergences cancel after proper NP renormalization \Rightarrow Strong numerical evidence for the renormalizability of HQET

Some examples of $N_{f}=0$ results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma \& Sommer, in preparation
Computation of $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$ in HQET matches at $\mathrm{m}_{\mathrm{B}_{\mathrm{s}}}$ with interpolating between the charm sector (around $\mathrm{F}_{\mathrm{D}_{\mathrm{s}}}$) and $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}$

- HYP \& GEVP lead to $(2-3) \%$ precision for $F_{B_{s}}$ in the continuum limit, i.e., $\mathrm{r}_{0}=0.5 \mathrm{fm}: \quad \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}=229(3) \mathrm{MeV}, \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat+1/m}}=212(5) \mathrm{MeV}$ (using $\mathrm{r}_{0}=0.45 \mathrm{fm}$ leads to $\simeq 15 \%$ increase, but $\mathrm{O}\left(1 / \mathrm{m}_{b}^{2}\right)$ corrections are small)
- Given the unclear precision of PT, interpolation methods have to be taken with care; the inherent perturbative error remains to be estimated
- Data points beyond charm difficult for $\mathrm{N}_{\mathrm{f}}>0$, obtain slope directly in HQET

Some examples of $N_{f}=0$ results

Blossier, Della Morte, Garron, von Hippel, Mendes, Simma \& Sommer, in preparation
Computation of $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$ in HQET matches at $\mathrm{m}_{\mathrm{B}_{\mathrm{s}}}$ with interpolating between the charm sector (around $\mathrm{F}_{\mathrm{D}_{\mathrm{s}}}$) and $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}$

- HYP \& GEVP lead to $(2-3) \%$ precision for $\mathrm{F}_{\mathrm{B}_{\mathrm{s}}}$ in the continuum limit, i.e., $\mathrm{r}_{0}=0.5 \mathrm{fm}: \quad \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }}=229(3) \mathrm{MeV}, \quad \mathrm{F}_{\mathrm{B}_{\mathrm{s}}}^{\text {stat }+1 / \mathrm{m}}=212(5) \mathrm{MeV}$ (using $\mathrm{r}_{0}=0.45 \mathrm{fm}$ leads to $\simeq 15 \%$ increase, but $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{b}}^{2}\right)$ corrections are small)
- Given the unclear precision of PT, interpolation methods have to be taken with care; the inherent perturbative error remains to be estimated
- Data points beyond charm difficult for $\mathrm{N}_{\mathrm{f}}>0$, obtain slope directly in HQET

First physical results in the two-flavour theory

Which ingredients are needed?
Recall the strategy . . .

First physical results in the two-flavour theory

Which ingredients are needed?
S_{1} NP matching of HQET to QCD in finite volume with a relativistic b, to perform the power-divergent subtractions

- Crucial element of this step:

Calculation of the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume QCD $\left(\mathrm{L}_{1}\right)$

- . . . already discussed above
$S_{2,3,4}$ HQET computations in small \& intermediate volumes
- Evaluation of the HQET step scaling functions to connect the small matching ($\mathrm{L}_{1} \approx 0.5 \mathrm{fm}$) to the intermediate volume ($\mathrm{L}_{2}=2 \mathrm{~L}_{1} \approx 1 \mathrm{fm}$)
- Interpolation of the resulting HQET parameters to the large-volume " L_{∞} " lattice spacings ($\beta=5.2,5.3,5.5$)
S_{5} HQET computations in large volume
- Extract HQET energies \& matrix elements, using $\mathrm{N}_{\mathrm{f}}=2$ dynamical configurations in large volume (" L_{∞} ", periodic b.c.'s) produced by CLS
- Action: NP'ly $\mathrm{O}(\mathrm{a})$ improved $\mathrm{N}_{\mathrm{f}}=2$ Wilson; algorithm: DD-HMC
- Problem of slow sampling of topology less relevant here, since HQET can afford to work with much coarser lattices

HQET energies \& matrix elements (preliminary)

Preliminary $\mathrm{N}_{\mathrm{f}}=2$ HQET results in large volume

- Gauge configuration ensembles with $\mathrm{N}_{\mathrm{f}}=2 \mathrm{O}(\mathrm{a})$ improved Wilson fermions

β	$\mathrm{a}[\mathrm{fm}]$	$\mathrm{L}^{3} \times \mathrm{T}$	$\mathrm{m}_{\pi}[\mathrm{MeV}]$	$\#$	traj. sep.
5.2	0.08	$32^{3} \times 64$	700	110	16
		$32^{3} \times 64$	370	160	16
5.3	0.07	$32^{3} \times 64$	550	152	32
		$32^{3} \times 64$	400	600	32
		$48^{3} \times 96$	300	192	16
		$48^{3} \times 96$	250	350	16
5.5	0.05	$32^{3} \times 64$	430	250	20
		$48^{3} \times 96$	430	30	16

- Use of HYP-smearing \& variant of the stochastic all-to-all propagator method for the light quarks (8 noise sources, full time-dilution)
[Foley et al., 2005]
- GEVP: cleanly quantify systematic errors from excited state contaminations (variational basis of interpolating fields through Gaussian smearing levels)
- Energies, splittings, ground \& excited state matrix elements of the B, . .

HQET energies \& matrix elements (preliminary)

 $\frac{\text { CLS }}{\text { based }}$
Static energies $(\beta=5.3, a \approx 0.07 \mathrm{fm}) \&$ extrapolation to the chiral limit, where the r_{0} / a uncertainty is still large
[Scale prelim.; talk by B. Leder]

HQET energies \& matrix elements (preliminary)

$\bar{A}_{\text {collominam }}$, talk by B. Blossier

$$
\frac{\text { CLS }}{\text { based }}
$$

F_{B} : renormalized (not $O(a)$ improved) matrix element of $A_{0}^{\text {stat }}$, data well described by HM χ PT

HQET energies \& matrix elements (preliminary)

 $\frac{C L S}{b a s e d}$

Spin-splitting: situation for $\mathrm{O}(1 / \mathrm{m})$ terms of energies is encouraging

HQET parameters (preliminary)

After evolution to L_{2} where $5.3 \lesssim \beta \lesssim 5.8$

b-quark mass interpolation (preliminary)

Now insert $\omega_{1} \in \omega(M, a)$ for $N_{f}=2$:

$$
\begin{array}{rrr}
m_{B}=\omega_{1}+E_{\text {stat }}=m_{\text {bare }}+E_{\text {stat }}=\omega_{1}+E_{\text {stat }} & \\
= & \lim _{a \rightarrow 0}\left[E_{\text {stat }}-\Gamma^{\text {stat }}\left(L_{2}, a\right)\right] & a=(0.1-0.05) \mathrm{fm} \\
& +\lim _{a \rightarrow 0}\left[\Gamma^{\text {stat }}\left(L_{2}, a\right)-\Gamma^{\text {stat }}\left(L_{1}, a\right)\right] & a=(0.05-0.025) \mathrm{fm} \\
& +\frac{1}{L_{1}} \lim _{a \rightarrow 0} \Phi_{1}\left(L_{1}, M_{b}, a\right) & a=(0.025-0.012) \mathrm{fm}
\end{array}
$$

Analysis with $\mathrm{r}_{0} \mathrm{~m}_{\mathrm{B}}^{(\mathrm{exp})}, \mathrm{r}_{0}=(0.475 \pm 0.025) \mathrm{fm} \quad$ [Scale prelim.; talk by B. Leder]

- $\overline{\mathrm{m}}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\overline{\mathrm{m}}_{\mathrm{b}}\right)^{\text {stat }}=$ $4.255(25)_{r_{0}}(50)_{\text {stat }+ \text { renorm }}(?)_{\mathrm{a}} \mathrm{GeV}$
- NP renormalization; no CL yet in the large volume part (only $\beta=5.3$)
- Error dominated by $\approx 1 \%$ on Z_{M} in $L_{1} M=Z_{M} Z\left(1+b_{m} a m_{q}\right) \times L_{1} m_{q}$
- Dependence on the matching kinematics is very small

b-quark mass interpolation (preliminary)

Now insert $\omega_{1} \in \omega(M, a)$ for $N_{f}=2$:

$$
\begin{array}{rrr}
m_{B}=\omega_{1}+E_{\text {stat }}=m_{\text {bare }}+E_{\text {stat }}=\omega_{1}+E_{\text {stat }} & \\
= & \lim _{a \rightarrow 0}\left[E_{\text {stat }}-\Gamma^{\text {stat }}\left(L_{2}, a\right)\right] & a=(0.1-0.05) \mathrm{fm} \\
& +\lim _{a \rightarrow 0}\left[\Gamma^{\text {stat }}\left(L_{2}, a\right)-\Gamma^{\text {stat }}\left(L_{1}, a\right)\right] & a=(0.05-0.025) \mathrm{fm} \\
& +\frac{1}{L_{1}} \lim _{a \rightarrow 0} \Phi_{1}\left(L_{1}, M_{b}, a\right) & a=(0.025-0.012) \mathrm{fm}
\end{array}
$$

Analysis with $r_{0} m_{B}^{(\exp)}, r_{0}=(0.475 \pm 0.025) f m \quad$ [Scale prelim.; talk by B. Leder]

- $\overline{\mathrm{m}}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\overline{\mathrm{m}}_{\mathrm{b}}\right)^{\text {stat }+1 / \mathrm{m}}=$ $4.276(25)_{r_{0}}(50)_{\text {stat }+ \text { renorm }}(?)_{\mathrm{a}} \mathrm{GeV}$
- NP renormalization; no CL yet in the large volume part (only $\beta=5.3$)
- Error dominated by $\approx 1 \%$ on Z_{M} in $L_{1} M=Z_{M} Z\left(1+b_{m} a m_{q}\right) \times L_{1} m_{q}$
- Dependence on the matching kinematics is very small

b-quark mass interpolation (preliminary)

Now insert $\omega_{1} \in \omega(M, a)$ for $N_{f}=2$:

$$
\begin{array}{rrr}
m_{B}=\omega_{1}+E_{\text {stat }}=m_{\text {bare }}+E_{\text {stat }}=\omega_{1}+E_{\text {stat }} & \\
= & \lim _{a \rightarrow 0}\left[E_{\text {stat }}-\Gamma^{\text {stat }}\left(L_{2}, a\right)\right] & a=(0.1-0.05) \mathrm{fm} \\
& +\lim _{a \rightarrow 0}\left[\Gamma^{\text {stat }}\left(L_{2}, a\right)-\Gamma^{\text {stat }}\left(L_{1}, a\right)\right] & a=(0.05-0.025) \mathrm{fm} \\
& +\frac{1}{L_{1}} \lim _{a \rightarrow 0} \Phi_{1}\left(L_{1}, M_{b}, a\right) & a=(0.025-0.012) \mathrm{fm}
\end{array}
$$

Analysis with $\mathrm{r}_{0} \mathrm{~m}_{\mathrm{B}}^{(\exp)}, \mathrm{r}_{0}=(0.475 \pm 0.025) \mathrm{fm} \quad$ [Scale prelim.; talk by B. Leder]

- $\overline{\mathrm{m}}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\overline{\mathrm{m}}_{\mathrm{b}}\right)^{\text {stat }+1 / \mathrm{m}}=$ $4.320(40)_{r_{0}}(48) \mathrm{GeV} \quad\left(\mathrm{N}_{\mathrm{f}}=0!\right)$
- NP renormalization; no CL yet in the large volume part (only $\beta=5.3$)
- Error dominated by $\approx 1 \%$ on Z_{M} in $\mathrm{L}_{1} \mathrm{M}=\mathrm{Z}_{\mathrm{M}} \mathrm{Z}\left(1+\mathrm{b}_{\mathrm{m}} \mathrm{am}_{\mathrm{q}}\right) \times \mathrm{L}_{1} \mathrm{~m}_{\mathrm{q}}$
- Dependence on the matching kinematics is very small
Unquenching effect is presently not significant

b-quark mass interpolation (preliminary)

Now insert $\omega_{1} \in \omega(M, a)$ for $N_{f}=2$:

$$
\begin{array}{rrr}
m_{B}=\omega_{1}+E_{\text {stat }}=m_{\text {bare }}+E_{\text {stat }}=\omega_{1}+E_{\text {stat }} & \\
= & \lim _{a \rightarrow 0}\left[E_{\text {stat }}-\Gamma^{\text {stat }}\left(L_{2}, a\right)\right] & a=(0.1-0.05) \mathrm{fm} \\
& +\lim _{a \rightarrow 0}\left[\Gamma^{\text {stat }}\left(L_{2}, a\right)-\Gamma^{\text {stat }}\left(L_{1}, a\right)\right] & a=(0.05-0.025) \mathrm{fm} \\
& +\frac{1}{L_{1}} \lim _{a \rightarrow 0} \Phi_{1}\left(L_{1}, M_{b}, a\right) & a=(0.025-0.012) \mathrm{fm}
\end{array}
$$

Analysis with $\mathrm{r}_{0} \mathrm{~m}_{\mathrm{B}}^{(\exp)}, \mathrm{r}_{0}=(0.475 \pm 0.025) \mathrm{fm} \quad$ [Scale prelim.; talk by B. Leder]

- $\overline{\mathrm{m}}_{\mathrm{b}}^{\overline{\mathrm{MS}}}\left(\overline{\mathrm{m}}_{\mathrm{b}}\right)^{\text {stat }+1 / \mathrm{m}}=$ $4.276(25)_{\mathrm{r}_{0}}(50)_{\text {stat }+ \text { renorm }}(?)_{\mathrm{a}} \mathrm{GeV}$
- NP renormalization; no CL yet in the large volume part (only $\beta=5.3$)
- Error dominated by $\approx 1 \%$ on Z_{M} in $\mathrm{L}_{1} \mathrm{M}=\mathrm{Z}_{\mathrm{M}} \mathrm{Z}\left(1+\mathrm{b}_{\mathrm{m}} \mathrm{am}_{\mathrm{q}}\right) \times \mathrm{L}_{1} \mathrm{~m}_{\mathrm{q}}$
- Dependence on the matching kinematics is very small
Unquenching effect is presently not significant

Conclusions

- Lattice heavy flavour physics has become a precision field
- Lattice QCD inputs have to be pushed to few-\% level (incl. reliable assessment of all systematics), to contribute to uncovering signals for BSM physics in CKM analyses and resolve/support current tensions
- Dynamical quark simulations $\left(\mathrm{N}_{\mathrm{f}}=2,2+1,2+1+1\right)$ are routine: $\mathrm{m}_{\pi} \sim 500 \mathrm{MeV}$ (2001) $\rightarrow \mathrm{m}_{\pi} \lesssim 250 \mathrm{MeV}$ (2010), but the behaviour of algorithms at small lattices spacings needs to be understood
- Lattice artefacts are being investigated, but there are not yet always systematic continuum limit extrapolations
- Non-perturbative renormalization \& matching in HQET is doable with considerable accuracy
- Cross-checks between different calculations employing different techniques are demanded to ensure credibility in our lattice results and its impact for phenomenology
. . . Benoit Blossier, Chris Bouchard, John Bulava, Christine Davies, Michele Della Morte, Stefano Di Vita, Michael Donnellan, Eduardo Follana, Patrick Fritzsch, Nicolas Garron, Georg von Hippel, Andreas Kronfeld, Vittorio Lubicz, Marcus Petschlies, Heechang Na, Francesco Sanfilippo Hubert Simma, Jim Simone, Rainer Sommer, Amarjit Soni, Nazario Tantalo, Carsten Urbach, Oliver Witzel
for sending material \& useful discussions !

