Improving hadron creation operators on the lattice

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

$18^{\text {th }}$ June, 2010 - Lattice 2010, Sardinia

(1) Introduction - quark smearing

(2) Distillation

(3) Making hadron measurements with distillation
(4) Some first results

5 Stochastic estimation

Hadron Spectrum Collaboration

Carnegie Mellon

Justin Foley, David Lenkner, Colin Morningstar, Chik-Him Wong
Jefferson Lab
Jo Dudek, Robert Edwards, David Richards,
Christopher Thomas
U Maryland
Steve Wallace
U Pacific
Keisuke Jimmy Juge
TIFR, Mumbai Nilmani Mathur
Trinity College Dublin
MP, Sinéad Ryan
U Washington Huey-Wen Lin
DESY Zeuthen
John Bulava

The method

1 "A Novel quark-field creation operator construction for hadronic physics in lattice QCD." MP et.al. Phys.Rev.D80:054506,2009.

Results using the method

1 "Highly excited and exotic meson spectrum from dynamical lattice QCD"
J. Dudek et.al.

Phys.Rev.Lett.103:262001,2009.
(2) "Nucleon, Δ and Ω excited states in $N_{f}=2+1$ lattice QCD."
J. Bulava et.al arXiv:1004.5072

3 "Toward the excited meson spectrum of dynamical QCD" J. Dudek et.al.
... and a number of conference proceedings

Other presentations at this meeting

(1) Justin Foley (CMU)

2 Keisuke Jimmy Juge (U Pacific)
(3) Sinéad Ryan (TCD)
(4) Christopher Thomas (JLab)
(5) Stephen Wallace (U Maryland)

6 Chik-Kim Wong (CMU)

Motivation

- Computing quark propagation in configuration generation and observable measurement is expensive.
- Objective: extract as much information from correlation functions as possible.

Two problems:

(1) Most correlators: signal-to-noise falls exponentially
(2) Making measurements can be costly:

- Variational bases
- Exotic states using more sophisticated creation operators
- Isoscalar mesons
- Multi-hadron states
- Good operators are smeared; helps with problem 1, can it help with problem 2?

Smearing

- Smeared field: $\tilde{\psi}$ from ψ, the "raw" quark field in the path-integral:

$$
\tilde{\psi}(t)=\square[U(t)] \psi(t)
$$

- Extract the essential degrees-of-freedom.
- Smearing should preserve symmetries of quarks.
- Now form creation operator (e.g. a meson):

$$
O_{M}(t)=\overline{\tilde{\psi}}(t) \Gamma \tilde{\psi}(t)
$$

- Γ : operator in $\{\underline{s}, \sigma, c\} \equiv\{$ position,spin,colour $\}$
- Smearing: overlap $\langle n| O_{M}|0\rangle$ is large for low-lying eigenstate |n>

Gaussian smearing

- Many recipes in use. One popular gauge covariant choice is gaussian smearing:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{\sigma \nabla^{2}}{n}\right)^{n}=\exp \left(\sigma \nabla^{2}\right)
$$

- This acts in the space of coloured scalar fields on a time-slice: $N_{s} \times N_{c}$

Eigenvector index, i
Lattice 2010

- Data from $a_{s} \approx 0.12 \mathrm{fm} 16^{3}$ lattice: $16^{3} \times 3=12288$.

Distillation

"distill: to extract the quintessence of" [OED]

- Distillation: define smearing to be explicitly a very low-rank operator. Rank is $N_{\mathcal{D}}\left(\ll N_{s} \times N_{c}\right)$.

Distillation operator

$$
\square(t)=V(t) V^{\dagger}(t)
$$

with $V_{\underline{x}, c}^{a}(t)$ a $N_{\mathcal{D}} \times\left(N_{s} \times N_{c}\right)$ matrix

- Example (used to date): \square_{∇} the projection operator into \mathcal{D}_{∇}, the space spanned by the lowest eigenmodes of the 3-D laplacian
- Projection operator, so idempotent: $\square_{\nabla}^{2}=\square_{\nabla}$
- $\lim _{N_{\mathcal{D}} \rightarrow\left(N_{s} \times N_{c}\right)} \square_{\nabla}=I$
- Eigenvectors of ∇^{2} not the only choice...

Distillation: preserve symmetries

- Using eigenmodes of the gauge-covariant laplacian preserves lattice symmetries

$$
\begin{gathered}
U_{i}(\underline{x}) \xrightarrow{g} U_{i}^{g}(\underline{x})=g(\underline{x}) U_{i}(\underline{x}) g^{\dagger}(\underline{x}+\underline{\hat{\imath}}) \\
\square_{\nabla}(\underline{x}, \underline{y}) \xrightarrow{g} \square_{\nabla}^{g}(\underline{x}, \underline{y})=g(\underline{x}) \square_{\nabla}(\underline{x}, \underline{y}) g^{\dagger}(\underline{y})
\end{gathered}
$$

- Translation, parity, charge-conjugation symmetric
- Oh symmetric
- Close to SO(3) symmetric
- "local" operator

Eigenmodes of the Iaplacian

- Lowest mode on a $32^{3} \equiv(3.8 \mathrm{fm})^{3}$ lattice.
- Consider an isovector meson two-point function:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\left\langle\bar{u}\left(t_{1}\right) \square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} d\left(t_{1}\right) \quad \bar{d}\left(t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} u\left(t_{0}\right)\right\rangle\right\rangle
$$

- Integrating over quark fields yields

$$
\begin{gathered}
C_{M}\left(t_{1}-t_{0}\right)= \\
\left\langle\operatorname{Tr}_{\{\underline{s}, \sigma, c\}}\left(\square_{t_{1}} \Gamma_{t_{1}} \square_{t_{1}} M^{-1}\left(t_{1}, t_{0}\right) \square_{t_{0}} \Gamma_{t_{0}} \square_{t_{0}} M^{-1}\left(t_{0}, t_{1}\right)\right)\right\rangle
\end{gathered}
$$

- Substituting the low-rank distillation operator \square reduces this to a much smaller trace:

$$
C_{M}\left(t_{1}-t_{0}\right)=\left\langle\operatorname{Tr}_{\{\sigma, \mathcal{D}\}}\left[\Phi\left(t_{1}\right) \tau\left(t_{1}, t_{0}\right) \Phi\left(t_{0}\right) \tau\left(t_{0}, t_{1}\right)\right]\right\rangle
$$

- $\Phi_{\beta, b}^{\alpha, a}$ and $\tau_{\beta, b}^{\alpha, a}$ are $\left(N_{\sigma} \times N_{\mathcal{D}}\right) \times\left(N_{\sigma} \times N_{\mathcal{D}}\right)$ matrices.

$$
\Phi(t)=V^{\dagger}(t) \Gamma_{t} V(t) \quad \tau\left(t, t^{\prime}\right)=V^{\dagger}(t) M^{-1}\left(t, t^{\prime}\right) V\left(t^{\prime}\right)
$$

The "perambulator"

Meson two-point function

Distilled meson two-point correlation function

$$
C_{M}\left(t_{1}-t_{0}\right)=\operatorname{Tr}_{\{\sigma, D\}}\left[\Phi\left(t_{1}\right) \tau\left(t_{1}, t_{0}\right) \Phi\left(t_{0}\right) \tau\left(t_{0}, t_{1}\right)\right]
$$

More diagrams

$\bar{B}_{a b c} \tau_{a a^{\prime}} \tau_{b b^{\prime}} \tau_{c c^{\prime}} B_{a^{\prime} b^{\prime} c^{\prime}}$

$\operatorname{Tr}[\Phi \tau \Phi \tau \Phi \tau]$

$$
\bar{B}_{a b c} \tau_{a a^{\prime}} \tau^{\Gamma_{b b^{\prime}}} \tau_{c c^{\prime}} B_{a^{\prime} b^{\prime} c^{\prime}}
$$

$\operatorname{Tr}[\Phi \tau] \operatorname{Tr}[\Phi \tau]$

Isovector meson spectrum

HadSpec Collaboration [Dudek et.al. arXiv:1004.4930]

Talk: Christopher Thomas

Nucleon spectrum

Talk: Steve Wallace HadSpec Collaboration Bulava et.al. arXiv:1004.5072

Isoscalar mesons

- 16^{3} anisotropic lattice, $N_{\mathcal{D}}=64,447$ configs,
- $O_{M}=\overline{\tilde{\psi}} \gamma_{5} \tilde{\psi}$. PRELIMINARY.
- Scale: $30 a_{t} \approx 1 \mathrm{fm}$

- Statistical precision in $I=0$ mass fit $\approx 1-2 \%$

Optimising distillation

- Free to put operator ω into the distillation space

$$
\square=V V^{\dagger}=V_{\nabla} \omega \omega^{\dagger} V_{\forall}^{\dagger}
$$

- Determine $\omega_{a b}=\kappa_{a} \delta_{a b}$ via variational calculation
- Simple test: C_{π}
- 25\% improvement in $\langle\pi| \overline{\tilde{u}} \gamma_{5} \tilde{d}|0\rangle$
- Exponential fall-off in K_{a} with a

- So \square_{∇} works well, but is not optimal.

Bad news - the price tag

- So far - good results on modest lattice sizes $N_{s}=16^{3} \equiv(1.9 \mathrm{fm})^{3}$.
- Used $N_{\mathcal{D}}=64$ for mesons, $N_{\mathcal{D}}=32$ for baryons

The problem:

- To maintain constant resolution, need $N_{\mathcal{D}} \propto N_{s}$
- Budget:

Fermion solutions	construct τ	$\mathcal{O}\left(N_{s}^{2}\right)$
Operator constructions	construct ϕ	$\mathcal{O}\left(N_{s}^{2}\right)$
Meson contractions	$\operatorname{Tr}[\phi \tau \phi \tau]$	$\mathcal{O}\left(N_{s}^{3}\right)$
Baryon contractions	$\bar{B} \tau \tau \tau B$	$\mathcal{O}\left(N_{s}^{4}\right)$

- 32^{3} lattice: $64 \times\left(\frac{32}{16}\right)^{3}=512$ - too expensive.
- Some benefits in reduction in variance with N_{s}
- Can stochastic estimation technology help?

Stochastic estimation in the distillation space

- Construct a stochastic identity matrix in \mathcal{D} : introduce a vector η with $N_{\mathcal{D}}$ elements and with

$$
E\left[\eta_{i}\right]=0 \text { and } E\left[\eta_{i} \eta_{j}^{*}\right]=\delta_{i j}
$$

- Now the distillation operator is written

$$
\square=E\left[V \eta \eta^{\dagger} V^{\dagger}\right]=E\left[W W^{\dagger}\right]
$$

- Introduces noise into computations
- Dilution: "thin out" the stochastic noise with N_{η} orthogonal projectors to make a variance-reduced estimator of $I_{\mathcal{D}}=E\left[W W^{\dagger}\right]=\sum_{k=1}^{N_{\eta}} E\left[V \mathcal{P}_{k} \eta \eta^{\dagger} \mathcal{P}_{k} V^{\dagger}\right]$, with $W_{k}=V \mathcal{P}_{k} \eta$, a $N_{\eta} \times\left(N_{s} \times N_{c}\right)$ matrix

First test: baryon correlation function

Talk: Justin Foley

Isoscalar meson - revisited

Talk: Chik-Him Wong

η, Disconnected Diagram $\left(q_{1}\right)$

- Same signal, factor 32 cost reduction.

Multi-hadron states

Talk: Chik-Him Wong, Jimmy Juge

Summary

Distillation is a smearing algorithm that enables construction of many previously challenging measurements

- Exploits the low-rank nature of good smearing operators
- First results using the method have shown its usefulness
- The rapid cost growth as the volume is increased is a problem. One solution is to use stochastic estimation in the distillation space
- Many possibilities in this framework to improve the method

