Improving hadron creation operators on the lattice

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

18th June, 2010 — Lattice 2010, Sardinia

1 Introduction - quark smearing

2 Distillation

3 Making hadron measurements with distillation

Carnegie Mellon

Justin Foley, David Lenkner, Colin Morningstar, Chik-Him Wong

Jefferson Lab

Jo Dudek, Robert Edwards, David Richards,

Christopher Thomas

U Maryland

Steve Wallace

U Pacific

Keisuke Jimmy Juge

TIFR, Mumbai Nilmani Mathur

Trinity College Dublin MP, Sinéad Ryan

U Washington Huey-Wen Lin

DESY Zeuthen

John Bulava

The method

 "A Novel quark-field creation operator construction for hadronic physics in lattice QCD." MP et.al. Phys.Rev.D80:054506,2009.

Results using the method

- "Highly excited and exotic meson spectrum from dynamical lattice QCD"
 J. Dudek *et.al.* Phys.Rev.Lett.103:262001,2009.
- **2** "Nucleon, Δ and Ω excited states in $N_f = 2 + 1$ lattice QCD."
 - J. Bulava *et.al*

- arXiv:1004.5072
- "Toward the excited meson spectrum of dynamical QCD"
 J. Dudek et.al. arXiv:1004.4930
- ... and a number of conference proceedings

Other presentations at this meeting

- 1 Justin Foley (CMU)
- 2 Keisuke Jimmy Juge (U Pacific)
- Sinéad Ryan (TCD)
- 4 Christopher Thomas (JLab)
- Stephen Wallace (U Maryland)
- 6 Chik-Kim Wong (CMU)

- Computing quark propagation in configuration generation and observable measurement is expensive.
- Objective: extract as much information from correlation functions as possible.

Two problems:

Most correlators: signal-to-noise falls exponentially

- 2 Making measurements can be costly:
 - Variational bases
 - Exotic states using more sophisticated creation operators
 - Isoscalar mesons
 - Multi-hadron states
 - Good operators are smeared; helps with problem 1, can it help with problem 2?

Smearing

• **Smeared field:** $\tilde{\psi}$ from ψ , the "raw" quark field in the path-integral:

$$ilde{\psi}(t) = \Box[U(t)] \; \psi(t)$$

- Extract the essential degrees-of-freedom.
- Smearing should preserve symmetries of quarks.
- Now form creation operator (e.g. a meson):

 $O_M(t) = ar{ ilde{\psi}}(t) \Gamma ilde{\psi}(t)$

- Γ : operator in $\{\underline{s}, \sigma, c\} \equiv \{\text{position,spin,colour}\}$
- Smearing: overlap $\langle n|O_M|0\rangle$ is large for low-lying eigenstate $|n\rangle$

• Many recipes in use. One popular gauge covariant choice is **gaussian** smearing:

$$\lim_{n\to\infty}\left(1+\frac{\sigma\nabla^2}{n}\right)^n=\exp(\sigma\nabla^2)$$

• This acts in the space of coloured scalar fields on a time-slice: $N_s \times N_c$

Distillation

"distill: to extract the quintessence of" [OED]

• Distillation: **define** smearing to be explicitly a very low-rank operator. Rank is $N_D(\ll N_s \times N_c)$.

Distillation operator

 $\Box(t) = V(t)V^{\dagger}(t)$

with $V_{x,c}^{a}(t)$ a $N_{\mathcal{D}} \times (N_{s} \times N_{c})$ matrix

- Example (used to date): □_v the projection operator into D_v, the space spanned by the lowest eigenmodes of the 3-D laplacian
- Projection operator, so idempotent: $\Box_{\nabla}^2 = \Box_{\nabla}$
- $\lim_{N_{\mathcal{D}} \to (N_s \times N_c)} \Box_{\nabla} = I$
- Eigenvectors of ∇² not the only choice...

Distillation: preserve symmetries

 Using eigenmodes of the gauge-covariant laplacian preserves lattice symmetries

$$J_i(\underline{x}) \xrightarrow{g} U_i^g(\underline{x}) = g(\underline{x})U_i(\underline{x})g^{\dagger}(\underline{x}+\hat{\underline{\iota}})$$

$$\Box_{\nabla}(\underline{x},\underline{y}) \xrightarrow{g} \Box_{\nabla}^{g}(\underline{x},\underline{y}) = g(\underline{x}) \Box_{\nabla}(\underline{x},\underline{y}) g^{\dagger}(\underline{y})$$

- Translation, parity, charge-conjugation symmetric
- O_h symmetric
- Close to SO(3) symmetric
- "local" operator

Eigenmodes of the laplacian

• Lowest mode on a $32^3 \equiv (3.8 \text{ fm})^3$ lattice.

Consider an isovector meson two-point function:

 $C_{\mathcal{M}}(t_{1}-t_{0}) = \langle\!\langle \bar{u}(t_{1}) \Box_{t_{1}} \Gamma_{t_{1}} \Box_{t_{1}} d(t_{1}) \quad \bar{d}(t_{0}) \Box_{t_{0}} \Gamma_{t_{0}} \Box_{t_{0}} u(t_{0}) \rangle\!\rangle$

Integrating over quark fields yields

 $C_{M}(t_{1}-t_{0}) = \\ (\text{Tr}_{\{\underline{s},\sigma,c\}} \left(\Box_{t_{1}} \Gamma_{t_{1}} \Box_{t_{1}} M^{-1}(t_{1},t_{0}) \Box_{t_{0}} \Gamma_{t_{0}} \Box_{t_{0}} M^{-1}(t_{0},t_{1}) \right) \rangle$

 Substituting the low-rank distillation operator reduces this to a **much smaller** trace:

 $C_{M}(t_{1}-t_{0}) = \langle \operatorname{Tr}_{\{\sigma,\mathcal{D}\}} \left[\Phi(t_{1})\tau(t_{1},t_{0})\Phi(t_{0})\tau(t_{0},t_{1}) \right] \rangle$

• $\Phi_{\beta,b}^{\alpha,a}$ and $\tau_{\beta,b}^{\alpha,a}$ are $(N_{\sigma} \times N_{D}) \times (N_{\sigma} \times N_{D})$ matrices.

 $\Phi(t) = V^{\dagger}(t)\Gamma_t V(t) \qquad \tau(t, t') = V^{\dagger}(t)M^{-1}(t, t')V(t')$

The "perambulator"

Meson two-point function

Lattice 2010

More diagrams

В

Φ

 $Tr [\Phi \tau \Phi \tau \Phi \tau]$

Isovector meson spectrum

HadSpec Collaboration [Dudek et.al. arXiv:1004.4930]

Lattice 2010

Nucleon spectrum

Lattice 2010

Isoscalar mesons

- 16^3 anisotropic lattice, $N_D = 64$, 447 configs,
- $O_M = \overline{\tilde{\psi}} \gamma_5 \widetilde{\psi}$. PRELIMINARY.
- Scale: 30at ≈ 1fm

Optimising distillation

• Free to put operator $\boldsymbol{\omega}$ into the distillation space

 $\Box = VV^{\dagger} = V_{\nabla}\omega\omega^{\dagger}V_{\nabla}^{\dagger}$

• Determine $\omega_{ab} = \kappa_a \delta_{ab}$ via variational calculation

- Simple test: C_{π}
- 25% improvement in (π|ū
 [˜]γ₅d
 [˜]|0)
- Exponential fall-off in κ_a with a

• So □_∇ works well, but is not optimal.

Bad news - the price tag

- So far good results on modest lattice sizes $N_s = 16^3 \equiv (1.9 \text{ fm})^3$.
- Used $N_D = 64$ for mesons, $N_D = 32$ for baryons

The problem:

• To maintain constant resolution, need $N_D \propto N_s$

• Budget:

Fermion solutions	construct $ au$	$\mathcal{O}(N_s^2)$
Operator constructions	construct ቀ	$\mathcal{O}(N_s^2)$
Meson contractions	$\text{Tr}[\Phi au \Phi au]$	$\mathcal{O}(N_s^3)$
Baryon contractions	<u></u> ΒτττΒ	$\mathcal{O}(N_s^4)$

- 32^3 lattice: $64 \times (\frac{32}{16})^3 = 512$ too expensive.
- Some benefits in reduction in variance with N_s
- Can stochastic estimation technology help?

Stochastic estimation in the distillation space

 Construct a stochastic identity matrix in D: introduce a vector η with N_D elements and with

 $E[\eta_i] = 0$ and $E[\eta_i \eta_j^*] = \delta_{ij}$

Now the distillation operator is written

 $\Box = E[V\eta\eta^{\dagger}V^{\dagger}] = E[WW^{\dagger}]$

- Introduces noise into computations
- **Dilution:** "thin out" the stochastic noise with N_{η} orthogonal projectors to make a variance-reduced estimator of $I_{\mathcal{D}} = E[WW^{\dagger}] = \sum_{k=1}^{N_{\eta}} E[V\mathcal{P}_k\eta\eta^{\dagger}\mathcal{P}_kV^{\dagger}]$, with $W_k = V\mathcal{P}_k\eta$, a $N_{\eta} \times (N_s \times N_c)$ matrix

First test: baryon correlation function

Talk: Justin Foley

Isoscalar meson - revisited

Talk: Chik-Him Wong

Same signal, factor 32 cost reduction.

Multi-hadron states

Talk: Chik-Him Wong, Jimmy Juge

Lattice 2010

Distillation is a smearing algorithm that enables construction of many previously challenging measurements

- Exploits the low-rank nature of good smearing operators
- First results using the method have shown its usefulness
- The rapid cost growth as the volume is increased is a problem. One solution is to use stochastic estimation in the distillation space
- Many possibilities in this framework to improve the method

