Nuclear Physics from Lattice QCD

Lattice 2010, June 19, 2010

Major Challenges in Nuclear Physics origin & evolution of baryonic matter hot matter \Leftrightarrow RHIC, LHC quark-gluon plasma in early universe Kanaya & Gupta [Plenary, Thu.] origin of elements ⇔ Radioactive Beams nucleosynthesis in big-bang, stars, supernovae, ... dense matter ⇔ J-PARC, FAIR neutron stars, exotic nuclei, ...

_ATTICE QCD inputs are crucial

<u>Outline</u>

- [1] nuclear force nuclei and neutron stars
- [2] nuclear force from lattice QCD
- [3] hyperon force hyperonic matter and neutron star core
- [4] Hyperon force from lattice QCD

[5] origin of repulsive core and the Pauli principle

[6] Summary and Future

Benchmark Calculations of ⁴He by 7 methods → agreement within 0.5% Phys. Rev. C64, 044001 (2001) [arXiv:nucl-th/0104057]. Example: Green's Function Monte Carlo for light nuclei

S.C.Pieper, ``Quantum Monte Carlo Calculations of Light Nuclei," Riv. Nuovo Cim. 031, 709 (2008) [arXiv:0711.1500 [nucl-th]].

S.C.Pieper, Riv. Nuovo Cim. 031, 709 (2008) [arXiv:0711.1500 [nucl-th]].

NN interactions critical inputs in nuclear physics

Nijmegen partial-wave analysis, Stoks et al., Phys.Rev. C48 (1993) 792

Key features of the Nuclear force

One-pion exchange Yukawa (1935)

Multi-pions Taketani et al. (1951)

Repulsive core
 Jastrow (1951)

Modern high precision NN forces (90's-)

phenomenological NN interactions -- how many parameters ? --

R. Machleidt, arXiv:0704.0807 [nucl-th]

phenomenological NN interactions -- how many parameters ? --

R. Machleidt, arXiv:0704.0807 [nucl-th]

~ 4500 np and pp scattering data (T_{lab} < 300 MeV)
 NNN, YN, YY: data very limited

phenomenological NN interactions

-- how many parameters ? --

R. Machleidt, arXiv:0704.0807 [nucl-th]

high precision NN interactions		# of parameters	χ²/dof
CD Bonn	(p space)	38	~ 1
AV18	(r space)	40	~1
EFT in N ³ LO	(nπ+contact)	24	~ (1-2)

~ 4500 np and pp scattering data (T_{lab} < 300 MeV) NNN, YN, YY: data very limited

<u>Outline</u>

- [1] nuclear force nuclei and neutron stars
- [2] nuclear force from lattice QCD
- [3] hyperon force hyperonic matter and neutron star core
- [4] Hyperon force from lattice QCD

[5] origin of repulsive core and the Pauli principle

[6] Summary and Future

Nuclear Physics for Lattice QCD

- 1. NN Phase shift (Lüscher's formula)
- 2. BS wave function \rightarrow Lattice NN potential
- 3. Light nuclei
- 4. Strong coupling
- 1. Kuramashi et al. [arXiv:hep-lat/9501024].
- 1.2. Ishizuka et al. (CP-PACS Coll.) [arXiv:hep-lat/0503025].
- 1. Beane et al. (NPLQCD Coll), [arXiv:hep-lat/0602010].
- 2. Ishii, Aoki and Hatsuda, [arXiv:nucl-th/0611096].
- 3. Yamazaki et al . (PACS-CS Coll.) arXiv:0912.1383 [hep-lat]. Yamazaki [Plenary, Thur.]
- 4. Miura, Nakano, Ohnishi and Kawamoto, PR D80 (2009) 074034 de Forcrand and Fromm, [arXiv:0907.1915 [hep-lat]].

N. Ishii, T. Hatsuda (Tokyo) T. Doi, K. Sasaki, S. Aoki (Tsukuba) K. Murano (KEK), T. Inoue (Nihon) Y. Ikeda (RIKEN), H. Nemura (Tohoku)

Equal-time BS amplitude $\phi(\mathbf{r})$ in lattice QCD

 ϕ (r > R) \rightarrow phase shift : Lüscher, Nucl. Phys. B354 (1991) 531 ϕ (r < R) \rightarrow potential : Ishii, Aoki & Hatsuda, PRL 99 (2007) 022001

Lattice NN potential

 $\begin{array}{l} \hline \textbf{Quenched QCD} \\ (m_{\pi} = 530 \text{MeV}, \text{ L} = 4.4 \text{ fm}) \end{array}$

(2+1)-flavor QCD : lawasaki+clover (m_π=570MeV, L=2.9 fm)

HAL QCD procedure : 5 steps to go

Aoki, Hatsuda & Ishii, PTP 123 (2010) 89-128 [0909.5585 [hep-lat]],

(i) Choose a composite operator: e.g. $N(x) = \epsilon_{abc}q^a(x)q^b(x)q^c(x)$ (ii) Measure the BS amplitude: $\phi_n(\vec{r}) = \langle 0|N(\vec{x}+\vec{r})N(\vec{x})|(6q)_n\rangle$ (iii) Calculate off-shell T-matrix: $L_n(\vec{r}) = (k_n^2 + \nabla^2)\phi_n(\vec{r})$

(iv) Derive non-local potential: $U(\vec{r}, \vec{r}') = \sum_{n,n'}^{n} L_n(\vec{r}) \mathcal{N}_{nn'}^{-1} \phi_{n'}^*(\vec{r})$ $(k_n^2 + \nabla^2) \phi_n(\vec{r}) = \int U(\vec{r}, \vec{r}') \phi_n(\vec{r}') d^3r'$

(v) Make derivative expansion: $U(\vec{r}, \vec{r'}) = m_N V(\vec{r}, \nabla) \delta(\vec{r} - \vec{r'})$

 $V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$ $LO \qquad LO \qquad \text{NLO} \qquad \text{NNLO}$

NNLO NLO LO $V(\vec{r}, \nabla) = V_{\rm C}(r) + S_{12}V_{\rm T}(r) + \vec{L} \cdot \vec{S} V_{\rm LS}(r) + \{V_{\rm D}(r), \nabla^2\} + \cdots$ tensor spin-orbit central P-wave Deuteron Nuclear Binding Nuclear saturation binding superfluidity S-wave superfluidity U(r,r') reproduces phase shift, and is E-independent 1. $\{ N(x), U(r,r') \}$ is <u>a pair</u> to reproduce observables 2. Validity of $(p/\Lambda)^2$ -expansion needs to be checked 3. Murano [Parallel 38, Thur.]

4. <u>Coupled channel</u> potential

5. <u>NNN</u> force from $\phi(r, \rho)$

Sasaki [Parallel 49, Fri.] Ishii [Parallel 50, Fri.]

Doi [Parallel 49, Fri.]

LO potentials : $V_{C}(r) \& V_{T}(r)$

mixing between ${}^{3}S_{1}$ and ${}^{3}D_{1}$ through the tensor force

$$|\phi\rangle = |\phi_S\rangle + |\phi_D\rangle$$

$$|\phi_S\rangle = \mathcal{P}|\phi\rangle = \frac{1}{24} \sum_{\mathcal{R} \in \mathcal{O}} \mathcal{R}|\phi\rangle$$
$$|\phi_D\rangle = \mathcal{Q}|\phi\rangle = (1-\mathcal{P})|\phi\rangle$$

$$\mathcal{P}(H_0 + V_C + S_{12}V_T) |\phi\rangle = E\mathcal{P} |\phi\rangle$$

$$\mathcal{Q}(H_0 + V_C + S_{12}V_T) |\phi\rangle = E\mathcal{Q} |\phi\rangle$$

LO potentials : $V_{C}(r) \& V_{T}(r)$

Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128

LO potentials : $V_{C}(r) \& V_{T}(r)$

Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128

 $V_c(r \rightarrow 0)$ ~ (log r)^β/r², $V_T(r \rightarrow 0)$ →0 from OPE Aoki, Balog & Weisz, JHEP 1005, 008 (2010)

LO potentials : $V_{\rm C}(r)$ & $V_{\rm T}(r)$

Aoki, Hatsuda & Ishii, 0909.5585 [hep-lat] PTP 123 (2010) 89-128

Evidence of the one-pion-exchange

Murano [Parallel 38, Thur.]

Murano [Parallel 38, Thur.]

Phase shifts from V(r) in (2+1)-flavor QCD

NN scattering lengths in full QCD

BS wave func. $\rightarrow q^2 \rightarrow$ Luscher's formula

NN interaction

- net attraction at low energy
 still far from "unitary regime"
 V(r) : mild func. of m_α
 - a_0 : highly sensitive to m_q

Kuramashi Plot [hep-lat/9510025]

<u>Outline</u>

- [1] nuclear force nuclei and neutron stars
- [2] nuclear force from lattice QCD
- [3] hyperon force hyperonic matter and neutron star core
- [4] Hyperon force from lattice QCD

[5] origin of repulsive core and the Pauli principle

[6] Summary and Future

YN and YY interactions

Radius ~ 10 km Mass ~ solar mass Central density ~ 10^{12} kg/cm³

Crust

Neutron Liquid

YN and YY interactions

Radius ~ 10 km Mass ~ solar mass Central density ~ 10^{12} kg/cm³

Schaffner-Bielich, ``Strangeness in Compact Stars," Nucl. Phys.A 835, 279 (2010) [arXiv:1002.1658 [nucl-th]].

Thermonuclear Burst in X-ray Binaries 4U 1608-248 EXO 1745-248 4U 1820-30

Ozel, Baym & Guver, arXiv: 1002.3153 [astro-ph.HE]

2D (N-Z) Nuclear Chart

J-PARC@KEK, Japan 2009

Neutron Number

2D (N-Z) Nuclear Chart

Neutron Number

Λ hypernuclei

Hotchi et al., PRC 64 (2001) 044302

<u>Outline</u>

- [1] nuclear force nuclei and neutron stars
- [2] nuclear force from lattice QCD
- [3] hyperon force hyperonic matter and neutron star core[4] Hyperon force from lattice QCD
- [5] origin of repulsive core and the Pauli principle
- [6] Summary and Future

∧N interaction in (2+1)-flavor QCD

Beane et al., (NPLQCD), arXiv:1004.2935 [hep-lat]. Parreno (NPL QCD), Nuc.Phys. A835 (2010) 184

(2+1)-flavor anisotropic clover $20^3 \times 120$, $a_s=0.12$ fm m_{π}~360MeV

<u>Outline</u>

- [1] nuclear force nuclei and neutron stars
- [2] nuclear force from lattice QCD
- [3] hyperon force hyperonic matter and neutron star core
- [4] Hyperon force from lattice QCD
- [5] origin of repulsive core and the Pauli principle
- [6] Summary and Future

First step to predict YN, YY interactions not accessible in exp.
 Origin of the repulsive core (universal or not)

$$8 \times 8 = \underline{27 + 8s + 1} + \underline{10^* + 10 + 8a}$$

Symmetric Anti-symmetric

Six independent potentials in flavor-basis

$$V^{(27)}(r), V^{(8s)}(r), V^{(1)}(r)$$

 $V^{(10^*)}(r), V^{(10)}(r), V^{(8a)}(r)$
 $^{3}S_1$

Equal-time BS amplitudes in the SU(3) limit

Iwasaki + clover (CP-PACS/JLQCD) L=1.9 fm, a=0.12 fm, 16^3x32 m_{π}=835 MeV, m_B=1752 MeV

Inoue [Parallel 49, Fri.]

Pauli principle at work !

1 : allowed
 27 : partially blocked

8s: almost blocked

c.f. Oka, Shimizu, Yazaki , Nucl. Phys. A464 (1987) 700

BB potentials in flavor-basis (${}^{1}S_{0}$ channel)

NN

Inoue [Parallel 49, Fri.]

BB potentials in flavor-basis (${}^{1}S_{0}$ channel)

Inoue [Parallel 49, Fri.]

BB potentials in flavor-basis (${}^{1}S_{0}$ channel)

Inoue [Parallel 49, Fri.]

S-wave η_c -N interaction

no Pauli-blocking + QCD van der Walls attraction → charmonium-nucleus bound state ?

Brodsky et al., PRL 64 (1990) 1011

Quenched QCD: 32^3x48 , L = 3 fm (2+1)-flavor QCD on-going

Sasaki & Kawanai [Parallel 49, Fri.]

Potential from BS wave function

S-wave η_c -N interaction

no Pauli-blocking + QCD van der Walls attraction → charmonium-nucleus bound state ?

Brodsky et al., PRL 64 (1990) 1011

Quenched QCD: 32^3x48 , L = 3 fm (2+1)-flavor QCD on-going

Sasaki & Kawanai [Parallel 49, Fri.]

Potential from BS wave function

Phase shift from Lüscher's formula with wisted boundary

1. Nuclear physics needs QCD inputs

- Lattice NN, NNN, YN, YY, YYY interactions
 - \rightarrow ab initio nuclear calculations, neutron/hyperon matter

2. Different approaches available

- phase shifts
- lattice potentials from BS amplitude
- lattice nuclei
- 3. Imaginary nuclei with large quark mass ? lattice nuclei vs. lattice pot.+ab initio cal.
- 4. Full QCD in large volume at physical point e.g. L=6 fm, m_{π} =135 MeV (PACS-CS)

