Preliminary results of $\Delta I=1 / 2$ and $3 / 2, K$ to $\pi \pi$ Decay Amplitudes from Lattice QCD

Qi Liu

Columbia University, RBC and UKQCD Collaborations

$$
\text { June 14, 2010, Lattice } 2010
$$

Introduction

Experiment facts:

- $\Delta I=\frac{1}{2}$ rule.

$$
\frac{\operatorname{Re}\left(A_{0}\right)}{\operatorname{Re}\left(A_{2}\right)}=22.46
$$

- Direct CP violation in $K \rightarrow \pi \pi$ decays

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(1.65 \pm 0.26) \times 10^{-3}
$$

$\sim 16 \%$ error
(from PDG 2010 book)

Effective Harmiltonian

$$
\left\langle(\pi \pi)_{l}\right| H_{w}\left|K^{0}\right\rangle=A_{l} e^{i \delta_{l}}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s} \sum_{i=1}^{10}\left[\left(z_{i}(\mu)+\tau y_{i}(\mu)\right)\left\langle Q_{i}\right\rangle_{I}(\mu)\right]
$$

- Current-Current operators(1,2):

$$
Q_{2}=\left(\bar{s}_{\alpha} d_{\beta}\right) v-A\left(\bar{u}_{\beta} u_{\alpha}\right) v-A
$$

- QCD penguin operators $(3,4,5,6)$:

$$
Q_{6}=\left(\bar{s}_{\alpha} d_{\beta}\right)_{v-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{v+A}
$$

- Electroweak penguin operators(7,8,9,10):

$$
Q_{7}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

Overview of the Steps to get A_{0} and A_{2}

(1) Lattice calculation: $Q_{i}^{\text {lat }}(a)$

- $<\pi \pi(t) \mid \pi \pi(0)>=Z_{\pi \pi} Z_{\pi \pi}^{*}\left(e^{-E_{\pi \pi} t}+e^{-E_{\pi \pi}(T-t)}+C\right)$
- $\langle K| K>=Z_{k} Z_{k}^{*}\left(e^{-m_{k} t}+e^{-m_{k}(T-t)}\right)$
- $<\pi \pi\left(t_{\pi}\right)\left|Q_{i}(t)\right| K(0)>=Q_{i}^{\text {lat }}\left(\right.$ a) $Z_{\pi \pi}^{*} Z_{k} e^{-E_{\pi \pi} t_{\pi}} e^{-\left(m_{k}-E_{\pi \pi}\right) t}$
(2) Renormalization: $Q_{i}^{\text {cont }}(\mu)=Z_{i j}(\mu, a) Q_{j}^{\text {lat }}(a)$
- RI/MOM scheme vs. $\overline{M S}$ scheme
(3) Wilson Coefficients: $z_{i}(\mu)$ and $y_{i}(\mu)$
(9) Finite volume effect: Lellouch Lüscher factor

Computational specifics

- Lattice:
- $2+1$ flavor DWF, $m_{s}=0.032, m_{l}=0.01$
- $16^{3} \times 32$ space time volume with $L_{s}=16$
- Box size $L=1.82 \mathrm{fm}, m_{\pi}=420 \mathrm{MeV}$
- $K \rightarrow \pi \pi$ set up
- Partially quenched strange quark $m_{s}($ valence $)=0.066,0.099,0.165$
- Periodic Boundary condition: Total momenum $\vec{P}=0$, or $2 \pi / L \hat{x}$
- Propagators: $D_{w}\left(t_{\text {sink }} ; t_{\text {src }}\right)$
- Coulomb Gauge Fixed Wall Source and Sink
- Propagators are calculated on all time slices $\mathrm{T}=32$ ($\times 12$ inversion) \rightarrow Huge statistics $\times 400$ configurations
\rightarrow Resolve signal from disconnect diagrams
- Eigenvector accelerator code, provided by Ran Zhou

$\pi \pi$ scattering

$$
\begin{aligned}
& <20(t) \mid 20(0)>=2(D-C) \\
& <00(t) \mid 00(0)>=2 \mathrm{D}+\mathrm{C}-6 \mathrm{R}+3 \mathrm{~V}
\end{aligned}
$$

$\pi \pi$ energy

P	E_{π}	$E_{I 0}$	$E_{I 0 V}$	$E_{I 2}$	$E_{k}(0)$	$E_{k}(1)$	$E_{k}(2)$
0	$0.2427(7)$	$0.450(17)$	$0.4392(59)$	$0.5054(15)$	$0.4255(6)$	$0.5070(6)$	$0.6453(7)$
1	$0.4698(35)$	$0.753(25)$	$0.6987(87)$	$0.7382(39)$	$0.5855(16)$	$0.6485(15)$	$0.7647(14)$

$K^{0} \rightarrow \pi \pi(I=0)$ contractions

Contraction details

Contraction details

Contraction details

Contraction details

Contraction of Q_{2} and Q_{6}

$$
\begin{aligned}
& <00\left|Q_{2}\right| K^{0}>=i \frac{1}{\sqrt{3}}\{-(2)-2 \cdot(6)+3 \cdot 10+3 \cdot 18-3 \cdot \sqrt{34}\} \\
& <00\left|Q_{6}\right| K^{0}>=i \sqrt{3}\{-8)+2 \cdot(12-16+2 \cdot 20+24-28-32-2 \cdot 66-40+44+48\}
\end{aligned}
$$

For simplicity, we write the contribution to each operator as

$$
\begin{aligned}
& <00\left(t_{\pi}\right)\left|Q_{i}(t)\right| K^{0}(0)>_{\text {sub }} \\
= & <00\left(t_{\pi}\right)\left|Q_{i}(t)\right| K^{0}(0)>-\alpha_{i}<00\left(t_{\pi}\right)\left|\bar{s} \gamma_{5} d(t)\right| K^{0}(0)> \\
= & \text { Type } 1+\text { Type } 2+\text { Type } 3+\text { Type } 4-\text { Mix } 3-\text { Mix } 4 \\
= & \text { Type } 1+\text { Type } 2+(\text { Type3 }- \text { Mix } 3)+(\text { Type } 4-\text { Mix } 4) \\
= & \text { Type } 1+\text { Type } 2+\text { Sub3 }+ \text { Sub4 }
\end{aligned}
$$

The subtraction coefficient can be calculated from $\alpha_{i}=\frac{\langle 0| Q_{i}(t)\left|K^{0}(0)\right\rangle}{\langle 0| \bar{\xi} \gamma \gamma_{5} d(t)\left|K^{0}(0)\right\rangle}$

Operator Q_{2}

Operator Q_{2}

Operator Q_{6}

Fitting Results

i	$Q_{i}^{\prime}(a)$	$Q_{i}(a)$	$\%$ to $\operatorname{Re}\left(A_{0}\right)$	$\%$ to $\operatorname{Im}\left(A_{0}\right)$
1	$-6.5(38) \mathrm{e}-03$	$-4(12) \mathrm{e}-03$	8.5	0
2	$1.75(14) \mathrm{e}-02$	$1.37(52) \mathrm{e}-02$	91.6	0
3	$1.0(10) \mathrm{e}-02$	$1.2(33) \mathrm{e}-02$	0.003	6.8
4	$3.39(80) \mathrm{e}-02$	$2.9(27) \mathrm{e}-02$	0.50	-61.1
5	$-5.04(91) \mathrm{e}-02$	$-1.7(30) \mathrm{e}-02$	-0.03	-2.7
6	$-1.59(10) \mathrm{e}-01$	$-6.4(40) \mathrm{e}-02$	-0.37	141.2
7	$1.435(44) \mathrm{e}-01$	$1.16(12) \mathrm{e}-01$	0.02	-0.48
8	$4.42(11) \mathrm{e}-01$	$3.49(24) \mathrm{e}-01$	-0.14	9.6
9	$-1.50(29) \mathrm{e}-02$	$-1.0(10) \mathrm{e}-02$	-0.0003	5.8
10	$9.2(29) \mathrm{e}-03$	$6.6(97) \mathrm{e}-03$	0003	0.82

Q_{i}^{\prime} means the result without the fully disconnected graph (no type4 graph).
Fitting range [5:10]

Combine everything together

$$
A_{I}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s} \sum_{i=1}^{10}\left\{\left(z_{i}(2.15)+\tau y_{i}(2.15)\right) Z_{i j}(2.15, a)\left\langle Q_{j}\right\rangle_{l}(a)\right\}
$$

(1) Wilson Coefficients $z_{i}(2.15 \mathrm{GeV})$ and $y_{i}(2.15 \mathrm{GeV})$.
(2) Renormalization factor $Z_{i j}\left(2.15 \mathrm{GeV}, a^{-1}=1.73 \mathrm{GeV}\right)$

Taken from Our group's previous paper(Shu Li).
(3) Finite Volumn effect (and normalization of states on lattice)

- Lellouch Lüscher factor

$$
|A|^{2}=\frac{1}{2} 8 \pi \gamma^{2}\left(\frac{E_{\pi \pi}}{p}\right)^{3}\left\{p \frac{\partial \delta(p)}{\partial p}+q \frac{\partial \phi(q)}{\partial q}\right\}|M|^{2}=\frac{1}{2} F^{2}|M|^{2}
$$

- Free field limit ($\vec{P}=0$ case)

$$
|A|^{2}=\frac{1}{2} 4\left(2 m_{\pi}\right)^{2} m_{K} L^{3}|M|^{2}=\frac{1}{2} F_{f}^{2}|M|^{2}
$$

These are derived by assuming that $<p \mid p^{\prime}>=2 p_{0}(2 \pi)^{3} \delta\left(\overrightarrow{(p)}-\overrightarrow{\left(p^{\prime}\right)}\right)$, and Particle states in finite volume are normalized to unity.

$\operatorname{Re}\left(A_{0}\right)$ and $\operatorname{Im}\left(A_{0}\right)$

Notice that $E_{I=0}=0.450(17)$ and $E_{I=0 \text { vout }}=0.4392(59)$					
m_{K}	F_{f}	$\operatorname{Re}\left(A_{0}^{\prime}\right)(\mathrm{GeV})$	$\operatorname{Re}\left(A_{0}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{0}^{\prime}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{0}\right)(\mathrm{GeV})$
$0.4255(6)$	40.5	$37.8(2.0) e^{-8}$	$28(8) e^{-8}$	$-62.1(5.2) e^{-12}$	$-21(20) e^{-12}$
$0.5070(6)$	44.2	$43.5(2.4) e^{-8}$	$35(10) e^{-8}$	$-67.7(5.5) e^{-12}$	$-48(27) e^{-12}$
on shell	-	$38.7(2.1) e^{-8}$	$30(8) e^{-8}$	$-63.1(5.3) e^{-12}$	$-29(22) e^{-12}$

From $t_{\pi}-t_{K}=14$, and fitting range [5:10]
Used Free field normalization of states.
For $\mathrm{I}=0$, it is very difficult to apply Lellouch Luscher factor here given the small volume. Numerically, $\partial \phi(q) / \partial q$ becomes divergent at $q^{2}=$ -0.06639 which correspond to $E_{I 0}=0.441$. Luscher's derivation requires that the Interaction range $R<L / 2$. If we plug in $E_{10}=0.450$, we'll get $F=90 \approx 2 F_{f}$.

Zero momentum results (420MeV pion mass)

$\operatorname{Re}\left(A_{2}\right)$ and $\operatorname{Im}\left(A_{2}\right)$, Used Lellouch Luscher factor

m_{K}	$E_{I 2}$	F	$\operatorname{Re}\left(A_{2}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{2}\right)(\mathrm{GeV})$
$0.5070(6)$	$0.5054(15)$	$36.8(2)$	$5.395(45) e^{-8}$	$-0.7792(78) e^{-12}$

From $t_{\pi}-t_{K}=12$, fitting range [5:7] to get more accurate result.

Compare with A_{0} :

$\operatorname{Re}\left(A_{0}^{\prime}\right)$	$\operatorname{Re}\left(A_{0}\right)$	$\operatorname{Im}\left(A_{0}^{\prime}\right)$	$\operatorname{Im}\left(A_{0}\right)$
$38.7(2.1) e^{-8}$	$30(8) e^{-8}$	$-63.1(5.3) e^{-12}$	$-29(22) e^{-12}$

At this highly unphysical kinematics point: $m_{\pi}=420 \mathrm{MeV}$

- $\frac{\operatorname{Re}\left(A_{0}\right): K^{0}(778) \rightarrow \pi(420) \pi(420)}{\operatorname{Re}\left(A_{2}\right): K^{0}(874) \rightarrow \pi(420) \pi(420)} \sim 6$ (or 13 using the LL factor)
- $\epsilon^{\prime}=i e^{i\left(\delta_{2}-\delta_{0}\right)} \frac{1}{\sqrt{2}} \frac{\operatorname{Re}\left(A_{2}\right)}{\operatorname{Re}\left(A_{0}\right)}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re}\left(A_{2}\right)}-\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right] \sim i e^{i\left(\delta_{2}-\delta_{0}\right)} 10(9) e^{-6}$

Non zero total Momemtum, 420 MeV pion, $\vec{P}=679 \mathrm{MeV}$

$\underline{R e}\left(A_{2}\right)$ and $\operatorname{Im}\left(A_{2}\right)$

E_{K}	$E_{I 2}$	F	$\operatorname{Re}\left(A_{2}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{2}\right)(\mathrm{GeV})$
$0.6485(15)$	$0.7382(39)$	$43.5(3)$	$7.856(77) e^{-8}$	$-0.526(11) e^{-12}$
$0.7647(14)$	$0.7382(39)$	$43.5(3)$	$8.648(84) e^{-8}$	$-0.427(9) e^{-12}$

$\operatorname{Re}\left(A_{0}\right)$ and $\operatorname{Im}\left(A_{0}\right)$ Barely see a signal even without the fully disconnected graph. Lellouch Luscher factor are calculated $(p \neq 0)$.

E_{K}	$E_{I 0}$	F	$\operatorname{Re}\left(A_{0}^{\prime}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{0}^{\prime}\right)(\mathrm{GeV})$
$0.6485(15)$	$0.6987(87)$	$38(1)$	$31(11) e^{-8}$	$-64(21) e^{-12}$
$0.7647(14)$	$0.6987(87)$	$38(1)$	$25(8) e^{-8}$	$-40(17) e^{-12}$

From $t_{\pi}-t_{K}=12$, fitting range [5:8]

Conclusion

We did a first complete $K \rightarrow \pi \pi$ for both $\Delta I=1 / 2$ and $3 / 2$ calculation.

- Pros
- A direct calculation is possible.
- Divergent subtraction is needed and shown.
- 25% statistical errors for $\operatorname{Re}\left(A_{0}\right)$
- Cons
- $16^{3} \times 32$ lattice
- $m_{\pi}=420 \mathrm{MeV}$
- Zero momentum or too big error

"Yes, we can."

We need huge ammount of statistics.

- Computer: Faster machine ~ 100. (comes late this year)
- Algorithm: Deflation, EigenCG, multigrid, other CG ~ 10 ?

Toward physical case:

- $32^{3} \times 64$ lattice calculation
- $m_{\pi}=140 \mathrm{MeV}$: Better signal for the disconnected graph because signal decrease slower while the noisy is a constant.
- Big volume: Means more statistics
- With Momentum

Thank you!

Back Up

$\Delta I=3 / 2 K \rightarrow \pi \pi$ correlators. Both cases are close to on shell.

delta $\mathrm{I}=3 / 2$ correlator

$$
\mathrm{p}=0, \mathrm{~s}=0
$$

delta $1=3 / 2$ correlator

