Preliminary results of $\Delta I = 1/2$ and 3/2, K to $\pi\pi$ Decay Amplitudes from Lattice QCD

Qi Liu

Columbia University, RBC and UKQCD Collaborations

June 14, 2010, Lattice 2010

()

Introduction

Introduction

Experiment facts:

•
$$\Delta I = \frac{1}{2}$$
 rule.

$$\frac{Re(A_0)}{Re(A_2)} = 22.46$$

• Direct CP violation in $K \to \pi \pi$ decays

$${\it Re}(\epsilon'/\epsilon)=(1.65\pm0.26) imes10^{-3}$$

 $\sim 16\% \text{ error} \\ \text{(from PDG 2010 book)}$

イロト イポト イヨト イヨト

- 2

Introduction

Effective Harmiltonian

$$\langle (\pi\pi)_I | H_w | K^0 \rangle = A_I e^{i\delta_I} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} [(z_i(\mu) + \tau y_i(\mu)) \langle Q_i \rangle_I(\mu)]$$

• Current-Current operators(1,2):

$$Q_2 = (\bar{s}_\alpha d_\beta)_{V-A} (\bar{u}_\beta u_\alpha)_{V-A}$$

• QCD penguin operators(3,4,5,6):

$$Q_6 = (ar{s}_lpha d_eta)_{V-A} \sum_{oldsymbol{q} = u, d, s} (ar{q}_eta q_lpha)_{V+A}$$

• Electroweak penguin operators(7,8,9,10):

$$Q_7=rac{3}{2}(ar{s}_lpha d_lpha)_{V-A}\sum_{q=u,d,s}e_q(ar{q}_eta q_eta)_{V+A}$$

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 3 / 26

Introduction

Overview of the Steps to get A_0 and A_2

■ Lattice calculation: $Q_i^{lat}(a)$ • $< \pi\pi(t)|\pi\pi(0) >= Z_{\pi\pi}Z_{\pi\pi}^*(e^{-E_{\pi\pi}t} + e^{-E_{\pi\pi}(T-t)} + C)$ • $< K|K >= Z_k Z_k^*(e^{-m_k t} + e^{-m_k(T-t)})$ • $< \pi\pi(t_\pi)|Q_i(t)|K(0) >= \frac{Q_i^{lat}(a)}{Z_{\pi\pi}}Z_k e^{-E_{\pi\pi}t_{\pi}}e^{-(m_k - E_{\pi\pi})t}$

- **2** Renormalization: $Q_i^{cont}(\mu) = Z_{ij}(\mu, a)Q_j^{lat}(a)$
 - RI/MOM scheme vs. MS scheme
- Solution Wilson Coefficients: $z_i(\mu)$ and $y_i(\mu)$
- Finite volume effect: Lellouch Lüscher factor

A = A = A = ØQQ

Computational specifics

• Lattice:

- 2+1 flavor DWF, $m_s = 0.032$, $m_l = 0.01$
- $16^3 \times 32$ space time volume with $L_s = 16$
- Box size L = 1.82 fm, $m_{\pi} = 420 MeV$
- $K \to \pi\pi$ set up
 - > Partially quenched strange quark $m_s(valence) = 0.066, 0.099, 0.165$
 - Periodic Boundary condition: Total momenum $\vec{P} = 0$, or $2\pi/L\hat{x}$
- Propagators: $D_w(t_{sink}; t_{src})$
 - Coulomb Gauge Fixed Wall Source and Sink
 - ▶ Propagators are calculated on all time slices T=32 (× 12 inversion)

()

- \rightarrow Huge statistics \times 400 configurations
- \rightarrow Resolve signal from disconnect diagrams
- Eigenvector accelerator code, provided by Ran Zhou

$\pi\pi$ scattering

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 6 / 26

$\pi\pi$ energy

Ρ	E_{π}	E ₁₀	E _{I0V}	E _{I2}	$E_k(0)$	$E_k(1)$	$E_k(2)$
0	0.2427(7)	0.450(17)	0.4392(59)	0.5054(15)	0.4255(6)	0.5070(6)	0.6453(7)
1	0.4698(35)	0.753(25)	0.6987(87)	0.7382(39)	0.5855(16)	0.6485(15)	0.7647(14)

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 7 / 26

æ

$K^0 ightarrow \pi \pi (I=0)$ contractions

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 8 / 26

Contraction details

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 9 / 26

∃ → < ∃</p>

3

Contraction details

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 10 / 26

A B < A B </p>

Contraction details

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 11 / 26

Contraction details

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 12 / 26

★ 3 > < 3 >

Contraction of Q_2 and Q_6

$$< 00|Q_2|K^0 > = i\frac{1}{\sqrt{3}}\{-(2) - 2 \cdot (6) + 3 \cdot (10) + 3 \cdot (13) - 3 \cdot (34)\}$$

$$< 00|Q_6|K^0 > = i\sqrt{3}\{-(8) + 2 \cdot (12) - (16) + 2 \cdot (20) + (24) - (23) - (32) - 2 \cdot (36) - (40) + (44) + (43)\}$$

For simplicity, we write the contribution to each operator as

$$< 00(t_{\pi})|Q_{i}(t)|K^{0}(0) >_{sub}$$

$$= < 00(t_{\pi})|Q_{i}(t)|K^{0}(0) > -\alpha_{i} < 00(t_{\pi})|\bar{s}\gamma_{5}d(t)|K^{0}(0) >$$

$$= Type1 + Type2 + Type3 + Type4 - Mix3 - Mix4$$

$$= Type1 + Type2 + (Type3 - Mix3) + (Type4 - Mix4)$$

$$= Type1 + Type2 + Sub3 + Sub4$$

The subtraction coefficient can be calculated from $\alpha_i = \frac{\langle 0|Q_i(t)|\kappa^0(0) \rangle}{\langle 0|\bar{s}\gamma_5 d(t)|\kappa^0(0) \rangle}$

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 13 / 26

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Operator Q_2

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 14 / 26

Operator Q_2

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 15 / 26

Operator Q_6

Fitting Results

i	$Q_i'(a)$	$Q_i(a)$	% to $Re(A_0)$	% to $Im(A_0)$
1	-6.5(38)e-03	-4(12)e-03	8.5	0
2	1.75(14)e-02	1.37(52)e-02	91.6	0
3	1.0(10)e-02	1.2(33)e-02	0.003	6.8
4	3.39(80)e-02	2.9(27)e-02	0.50	-61.1
5	-5.04(91)e-02	-1.7(30)e-02	-0.03	-2.7
6	-1.59(10)e-01	-6.4(40)e-02	-0.37	141.2
7	1.435(44)e-01	1.16(12)e-01	0.02	-0.48
8	4.42(11)e-01	3.49(24)e-01	-0.14	9.6
9	-1.50(29)e-02	-1.0(10)e-02	-0.0003	5.8
10	9.2(29)e-03	6.6(97)e-03	0003	0.82

 $\overline{Q'_i}$ means the result without the fully disconnected graph (no type4 graph). Fitting range [5:10]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Results of A_0 and A_2

Combine everything together

$$A_{I} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \{ (z_{i}(2.15) + \tau y_{i}(2.15)) Z_{ij}(2.15, a) \langle Q_{j} \rangle_{I}(a) \}$$

- Wilson Coefficients $z_i(2.15 GeV)$ and $y_i(2.15 GeV)$.
- **2** Renormalization factor $Z_{ij}(2.15 \text{ GeV}, a^{-1} = 1.73 \text{ GeV})$

Taken from Our group's previous paper(Shu Li).

- Inite Volumn effect (and normalization of states on lattice)
 - Lellouch Lüscher factor

$$|A|^{2} = \frac{1}{2} 8\pi \gamma^{2} \left(\frac{E_{\pi\pi}}{p}\right)^{3} \left\{p \frac{\partial \delta(p)}{\partial p} + q \frac{\partial \phi(q)}{\partial q}\right\} |M|^{2} = \frac{1}{2} F^{2} |M|^{2}$$

• Free field limit ($\vec{P} = 0$ case)

$$|A|^{2} = \frac{1}{2} 4 (2m_{\pi})^{2} m_{K} L^{3} |M|^{2} = \frac{1}{2} F_{f}^{2} |M|^{2}$$

通 ト イヨ ト イヨト

These are derived by assuming that $< p|p' >= 2p_0(2\pi)^3 \delta(\vec{(p)} - \vec{(p')})$, and Particle states in finite volume are normalized to

unity.

$Re(A_0)$ and $Im(A_0)$

Notice that $E_{I=0} = 0.450(17)$ and $E_{I=0vout} = 0.4392(59)$						
m _K	F _f	$Re(A'_0)(GeV)$	$Re(A_0)(GeV)$	$Im(A'_0)(GeV)$	$Im(A_0)(GeV)$	
0.4255(6)	40.5	37.8(2.0)e ⁻⁸	$28(8)e^{-8}$	$-62.1(5.2)e^{-12}$	$-21(20)e^{-12}$	
0.5070(6)	44.2	43.5(2.4) <i>e</i> ⁻⁸	$35(10)e^{-8}$	$-67.7(5.5)e^{-12}$	$-48(27)e^{-12}$	
on shell	-	$38.7(2.1)e^{-8}$	$30(8)e^{-8}$	$-63.1(5.3)e^{-12}$	$-29(22)e^{-12}$	

From $t_{\pi} - t_{K} = 14$, and fitting range [5:10]

Used Free field normalization of states.

For I=0, it is very difficult to apply Lellouch Luscher factor here given the small volume. Numerically, $\partial \phi(q) / \partial q$ becomes divergent at $q^2 =$ -0.06639 which correspond to $E_{I0} = 0.441$. Luscher's derivation requires that the Interaction range R < L/2. If we plug in $E_{I0} = 0.450$, we'll get $F = 90 \approx 2F_{f}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Results of A_0 and A_2

Zero momentum results (420MeV pion mass)

 $\frac{Re(A_2) \text{ and } Im(A_2), \text{ Used Lellouch Luscher factor}}{m_{\mathcal{K}} \qquad E_{I2} \qquad F \qquad Re(A_2)(GeV) \qquad Im(A_2)(GeV)} \\ \hline 0.5070(6) \qquad 0.5054(15) \qquad 36.8(2) \qquad 5.395(45)e^{-8} \qquad -0.7792(78)e^{-12} \\ \hline \end{array}$

From $t_{\pi} - t_{K} = 12$, fitting range [5:7] to get more accurate result.

At this highly unphysical kinematics point: $m_{\pi} = 420 MeV$

•
$$\frac{Re(A_0):K^0(778) \to \pi(420)\pi(420)}{Re(A_2):K^0(874) \to \pi(420)\pi(420)} \sim 6 \text{ (or 13 using the LL factor)}$$

•
$$\epsilon' = ie^{i(\delta_2 - \delta_0)} \frac{1}{\sqrt{2}} \frac{Re(A_2)}{Re(A_0)} [\frac{Im(A_2)}{Re(A_2)} - \frac{Im(A_0)}{Re(A_0)}] \sim ie^{i(\delta_2 - \delta_0)} 10(9)e^{-6}$$

Qi Liu (Columbia University, RBC and UKQCPreliminary results of $\Delta I = 1/2$ and 3/2, K June 14, 2010, Lattice 2010 20 / 26

超す イヨト イヨト ニヨ

Results of A_0 and A_2

Non zero total Momemtum, 420MeV pion, $\vec{P} = 679 MeV$

$Re(A_2)$ and $Im(A_2)$							
E _K	E_{I2}	F	$Re(A_2)(GeV)$	$Im(A_2)(GeV)$			
0.6485(15)	0.7382(39)	43.5(3)	$7.856(77)e^{-8}$	$-0.526(11)e^{-12}$			
0.7647(14)	0.7382(39)	43.5(3)	8.648(84) <i>e</i> ⁻⁸	$-0.427(9)e^{-12}$			

 $Re(A_0)$ and $Im(A_0)$ Barely see a signal even without the fully disconnected graph. Lellouch Luscher factor are calculated $(p \neq 0)$.

E _K	<i>E</i> ₁₀	F	$Re(A_0')(GeV)$	$Im(A_0')(GeV)$
0.6485(15)	0.6987(87)	38(1)	$31(11)e^{-8}$	$-64(21)e^{-12}$
0.7647(14)	0.6987(87)	38(1)	$25(8)e^{-8}$	$-40(17)e^{-12}$

From $t_{\pi} - t_{K} = 12$, fitting range [5:8]

Conclusion

We did a first complete $K \to \pi \pi$ for both $\Delta I = 1/2$ and 3/2 calculation. • Pros

- A direct calculation is possible.
- Divergent subtraction is needed and shown.
- 25% statistical errors for $Re(A_0)$
- Cons
 - ▶ 16³ × 32 lattice
 - $m_{\pi} = 420 MeV$
 - Zero momentum or too big error

過 ト イヨ ト イヨト

```
"Yes, we can."
```

We need huge ammount of statistics.

- ullet Computer: Faster machine \sim 100. (comes late this year)
- \bullet Algorithm: Deflation, EigenCG, multigrid, other CG \sim 10 ?

Toward physical case:

- $32^3 \times 64$ lattice calculation
- $m_{\pi} = 140$ MeV: Better signal for the disconnected graph because signal decrease slower while the noisy is a constant.
- Big volume: Means more statistics
- With Momentum

通 と く ヨ と く ヨ と

Thank you!

Back Up

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

$\Delta I = 3/2 \ K \rightarrow \pi \pi$ correlators. Both cases are close to on shell.

(日) (同) (三) (三)

3