Wilson fermions at fine lattice spacings: scale setting, pion form factors and $(g-2)_{\mu}$

In collaboration with:

B. Brandt, S. Capitani, M. Della Morte, D. Djukanovic, J. Gegelia, G. von Hippel, B. Jäger, A. Jüttner, B. Knippschild

Lattice 2010, Villasimius, 15 June 2010

Motivation

• Continuum limit in simulations with dynamical quarks still poorly understood

 \rightarrow no continuum extrapolation for many quantities

- Hadronic form factors at fine lattice spacings: can study a wide range of momentum transfers
- Coordinated Lattice Simulations:

Berlin – CERN – DESY – Madrid – Mainz – Milan – Rome – Valencia – Wuppertal

• Share configurations and technology

CLS run tables

- $N_{\rm f} = 2$ flavours of non-perturbatively O(a) improved Wilson quarks
- Use deflation accelerated DD-HMC algorithm
- Generated ensembles without serious topology problems:

β	$a[\mathrm{fm}]$	lattice	$L[\mathrm{fm}]$	masses	$m_{\pi}L$	Labels
5.20	0.08	64×32^3	2.6	4 masses	4.8 - 9.0	A1 - A4
5.30	0.07	48×24^3	1.7	3 masses	4.6 - 7.9	D1 – D3
5.30	0.07	64×32^3	2.2	3 masses	4.7 – 7.9	E3 — E5
5.30	0.07	96×48^3	3.4	2 masses	5.0, 4.2	F6, F7
5.50	0.05	96×48^3	2.5	3 masses	5.3 – 7.7	N3 — N5
5.50	0.05	128×64^3	3.4	1 mass	4.7	O6

Outline:

- 1. Setting the scale
- 2. The pion electromagnetic form factor
- **3.** Hadronic vacuum polarisation contribution to $(g-2)_{\mu}$
- 4. Summary & Outlook

1. Setting the scale

• Procedure by CERN group

[Del Debbio et al., hep-lat/0610059]

1. Determine κ_s for each sea quark mass:

Interpolate
$$\left(rac{m_{
m K}}{m_{
m K^*}}
ight)^2$$
 in $(am_{
m K})^2$ to $rac{m_{
m K}}{m_{
m K^*}}\Big|_{
m phys}=0.554$

2. Interpolate $am_{\rm K}$ in the sea quark mass to reference point:

$$\left. \frac{m_{\pi}}{m_{\rm K}} \right|_{\rm ref} = 0.85 \quad \Rightarrow \quad am_{\rm K}|_{\rm ref}$$

Using $m_{\rm K} = 495 \,{\rm MeV} \Rightarrow a_{\rm ref} \,[{\rm fm}]$

- N.B. Value of a_{ref} [fm] does not correspond to the physical pion mass.
- Reference point useful to fix the ratio of scales at different bare couplings:

$$a_{\mathbf{Q}}(\beta_1) = \left(\frac{a_{\mathsf{ref}}(\beta_1)}{a_{\mathsf{ref}}(\beta_2)}\right) a_{\mathbf{Q}}(\beta_2), \quad Q = f_{\mathsf{K}}, \, r_0, \, m_{\Omega}, \dots$$

• Data sets: N3, N4, N5 : 96×48^3 at $\beta = 5.5$; F6 : 96×48^3 at $\beta = 5.3$

• $\beta = 5.5$: $am_{\rm K}|_{\rm ref} = 0.151(4) \Rightarrow a_{\rm ref} = 0.0603(15) \,{\rm fm}$ (preliminary) [Capitani et al., arXiv:0910.5578]

• $\beta = 5.3$: $am_{\rm K}|_{\rm ref} = 0.197(3) \Rightarrow a_{\rm ref} = 0.0784(10) \,{\rm fm}$ [Del Debbio et al., hep-lat/0610059]

Setting the scale using m_{Ω}

- Ω : stable in QCD; weak dependence on sea quark mass
- Effective masses from smeared-local correlator (Jacobi smearing)

N3: $\kappa_l = 0.1364$, $\kappa_{val} = 0.1365$, $\kappa_s = 0.13648(2)$

• Fit to ground plus 1st excited state: $m_1 \equiv m_{\Omega}, \ m_2 \equiv m_{\Omega} + 2m_{\pi}$

Setting the scale using m_{Ω}

- Ω : stable in QCD; weak dependence on sea quark mass
- Effective masses from smeared-local correlator (Jacobi smearing)

N4: $\kappa_l = 0.1365$, $\kappa_{val} = 0.1364$, $\kappa_s = 0.13639(2)$

• Fit to ground plus 1st excited state: $m_1 \equiv m_{\Omega}, \ m_2 \equiv m_{\Omega} + 2m_{\pi}$

Setting the scale using m_{Ω}

- Ω : stable in QCD; weak dependence on sea quark mass
- Effective masses from smeared-local correlator (Jacobi smearing)

N5: $\kappa_l = 0.1366$, $\kappa_{val} = 0.1363$, $\kappa_s = 0.13629(2)$

• Fit to ground plus 1st excited state: $m_1 \equiv m_{\Omega}, \ m_2 \equiv m_{\Omega} + 2m_{\pi}$

• Sea quark mass dependence of am_{Ω} at $\beta = 5.5$:

• Weak dependence on m_{sea} confirmed: quote am_{Ω} at lightest quark mass

 $\rightarrow \beta = 5.5: a_{\Omega} = 0.053(1) \, \text{fm}$ (preliminary)

• No determination of m_{Ω} at $\beta = 5.3$ so far

$$\rightarrow \quad \beta = 5.3: \quad a_{\Omega} = \left(\frac{a_{\mathsf{ref}}(\beta = 5.3)}{a_{\mathsf{ref}}(\beta = 5.5)}\right) 0.053(1) \,\mathrm{fm} = 0.069(2) \,\mathrm{fm} \text{ (preliminary)}$$

To-do list:

- Investigate different conditions to fix κ_s
 - \rightarrow requires extension of the range of valence quark masses
- Refinement of procedures to extract baryon masses: Matrix and vector correlators
- Comparison with determination of r_0 on CLS ensembles: (B. Leder's talk) \rightarrow determine $r_0 m_{\Omega}$

2. Pion electromagnetic form factor

• Provides information on pion structure:

$$\pi^+(\vec{p}_f)|^2_{\overline{3}}\overline{u}\gamma_\mu u - \frac{1}{\overline{3}}\overline{d}\gamma_\mu d|\pi^+(\vec{p}_i)\rangle = (p_f + p_i)_\mu f_\pi(q^2)$$
$$q^2 = (p_f - p_i)^2: \qquad \text{momentum transfer}$$

• Pion charge radius derived from form factor at zero q^2 :

$$f_{\pi}(q^2) = 1 - \frac{1}{6} \langle r^2 \rangle q^2 + \mathcal{O}(q^4) \quad \Rightarrow \quad \langle r^2 \rangle = 6 \left. \frac{\mathrm{d} f_{\pi}(q^2)}{\mathrm{d} q^2} \right|_{q^2 = 0}$$

• Restriction on minimum accessible momentum transfer:

$$\vec{p}_{i,f} = \vec{n} \frac{2\pi}{L} \Rightarrow |q^2| \ge 2m_\pi \left(m_\pi - \sqrt{m_\pi^2 + (2\pi/L)^2} \right)$$

 \rightarrow Lack of accurate data points near q^2

Twisted boundary conditions

[Bedaque 2004; de Divitiis, Petronzio & Tantalo 2004; Flynn, Jüttner & Sachrajda 2005]

• Apply "twisted" spatial boundary conditions;

Impose periodicity up to a phase $\vec{\theta}$:

$$\psi(x + L\hat{e}_k) = e^{i\theta_k}\psi(x) \quad \Rightarrow \quad p_k = n_k \frac{2\pi}{L} + \frac{\theta_k}{L}, \quad k = 1, 2, 3$$

• Can tune $|q^2|$ to any desired value

[Boyle, Flynn, Jüttner, Sachrajda, Zanotti, hep-lat/0703005]

$$\vec{\theta}_i = \vec{\theta}_1 - \vec{\theta}_3,$$
$$\vec{\theta}_f = \vec{\theta}_2 - \vec{\theta}_3$$

$$\Rightarrow q^{2} = (p_{i} - p_{f})^{2} = \left(E_{\pi}(\vec{p}_{i}) - E_{\pi}(\vec{p}_{f})\right)^{2} - \left[\left(\vec{p}_{i} + \frac{\vec{\theta}_{i}}{L}\right) - \left(\vec{p}_{f} + \frac{\vec{\theta}_{f}}{L}\right)\right]^{2}$$

β	$L^3 \cdot T$	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$	$m_{\pi}[{ m MeV}]$	Lm_{π}
5.50	$48^3 \cdot 96$	0.053	2.5	600	7.7
5.50	$48^3 \cdot 96$	0.053	2.5	510	6.5
5.50	$48^3 \cdot 96$	0.053	2.5	410	5.3
5.30	$48^3 \cdot 96$	0.069	3.3	290	5.0

eta	$L^3 \cdot T$	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$	$m_{\pi}[{ m MeV}]$	Lm_{π}
5.50	$48^3 \cdot 96$	0.053	2.5	600	7.7
5.50	$48^3 \cdot 96$	0.053	2.5	510	6.5
5.50	$48^3 \cdot 96$	0.053	2.5	410	5.3
5.30	$48^3 \cdot 96$	0.069	3.3	290	5.0

• Use stochastic noise source ("one-end trick")

[E. Endreß, Diploma thesis, 2009]

Pion form factor

• Mainz data

Pion form factor

• Comparison with other lattice calculations

Pion form factor

• Comparison with other lattice calculations

Pion charge radius

- Twisted boundary conditions: accurate data near $Q^2 = 0$
 - \rightarrow extract charge radius from linear slope

Pion charge radius

- Twisted boundary conditions: accurate data near $Q^2 = 0$
 - \rightarrow extract charge radius from linear slope

Pion charge radius

- Twisted boundary conditions: accurate data near $Q^2 = 0$
 - \rightarrow extract charge radius from linear slope

• Still to come: Fits to ChPT including vector degrees of freedom

3. Hadronic vacuum polarisation contribution to $(g-2)_{\mu}$

• Muon anomalous magnetic moment:

$$a_{\mu} = \frac{1}{2}(g-2)_{\mu}$$

 $a_{\mu} = \begin{cases} 11\,659\,208(6.3) \cdot 10^{-10} & \text{Experiment} \\ 11\,659\,179(6.5) \cdot 10^{-10} & \text{SM prediction,} \end{cases}$

 $(3.2\sigma \text{ tension})$

3. Hadronic vacuum polarisation contribution to $(g-2)_{\mu}$

• Muon anomalous magnetic moment:

 $a_{\mu} = \begin{cases} 11\,659\,208(6.3)\cdot10^{-10} \\ 11\,659\,179(6.5)\cdot10^{-10} \end{cases}$

$$a_{\mu} = \frac{1}{2}(g-2)_{\mu}$$

Experiment

SM prediction,

• Hadronic vacuum polarisation; leading contribution:

 $(3.2\sigma \text{ tension})$

• Vacuum polarisation tensor:

$$\Pi_{\mu\nu}(q^2) = \int d^4x \, e^{iq \cdot (x-y)} \, \langle J_{\mu}(x) J_{\nu}(y) \rangle \equiv (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(q^2)$$

[Blum; Blum & Aubin]

$$a_{\mu}^{\text{had}} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} \mathrm{d}Q^2 f(Q^2) \{\Pi(Q^2) - \Pi(0)\}$$

$$a_{\mu}^{\text{had}} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} \mathrm{d}Q^2 f(Q^2) \{\Pi(Q^2) - \Pi(0)\}$$

Problems for lattice calculations:

• Convolution integral dominated by momenta near m_{μ} : maximum of $f(Q^2)$ located at: $(\sqrt{5}-2)m_{\mu}^2 \approx 0.003 \,\text{GeV}^2$ lowest momentum transfer: $\left(\frac{2\pi}{T}\right)^2 \approx 0.06 \,\text{GeV}^2$

$$a_{\mu}^{\text{had}} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}Q^2 f(Q^2) \{\Pi(Q^2) - \Pi(0)\}$$

Problems for lattice calculations:

- Convolution integral dominated by momenta near m_{μ} : maximum of $f(Q^2)$ located at: $(\sqrt{5}-2)m_{\mu}^2 \approx 0.003 \,\text{GeV}^2$ lowest momentum transfer: $\left(\frac{2\pi}{T}\right)^2 \approx 0.06 \,\text{GeV}^2$
- Contributions from quark disconnected diagrams
 - Large noise-to-signal ratio
 - Twisted boundary conditions useless:
 effect of twist angle cancels

$$a_{\mu}^{\text{had}} = 4\pi^2 \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} \mathrm{d}Q^2 f(Q^2) \{\Pi(Q^2) - \Pi(0)\}$$

Problems for lattice calculations:

- Convolution integral dominated by momenta near m_{μ} : maximum of $f(Q^2)$ located at: $(\sqrt{5}-2)m_{\mu}^2 \approx 0.003 \,\text{GeV}^2$ lowest momentum transfer: $\left(\frac{2\pi}{T}\right)^2 \approx 0.06 \,\text{GeV}^2$
- Contributions from quark disconnected diagrams
 - Large noise-to-signal ratio
 - Twisted boundary conditions useless:
 effect of twist angle cancels
- Resonance effects: $\rho \rightarrow \pi \pi$

New strategy for two-flavour QCD

• QCD with $N_{\rm f} = 2$ flavours: $J_{\mu}(x) = \left(\frac{2}{3}j^{uu}_{\mu} - \frac{1}{3}j^{dd}_{\mu}\right)(x)$

 $\langle J_{\mu}(x)J_{\nu}(y)\rangle = \frac{4}{9}\left\langle j_{\mu}^{uu}j_{\nu}^{uu}\right\rangle - \frac{2}{9}\left\langle j_{\mu}^{uu}j_{\nu}^{dd}\right\rangle - \frac{2}{9}\left\langle j_{\mu}^{dd}j_{\nu}^{uu}\right\rangle + \frac{1}{9}\left\langle j_{\mu}^{dd}j_{\nu}^{dd}\right\rangle$

• Impose isospin symmetry, $m_u = m_d$, set $y \equiv 0$; Correlation function:

$$C_{\mu\nu}(q) = \frac{5}{9} C_{\mu\nu}^{(\text{con})}(q) + \frac{1}{9} C_{\mu\nu}^{(\text{disc})}(q)$$

$$C_{\mu\nu}^{(\text{con})}(q) = \sum_{x} e^{iq \cdot x} \left\langle \text{Tr} \left[\overline{\psi}(x) \gamma_{\mu} \psi(x) \, \overline{\psi}(0) \gamma_{\mu} \psi(0) \right] \right\rangle$$

$$C_{\mu\nu}^{(\text{disc})}(q) = \sum_{x} e^{iq \cdot x} \left\langle \text{Tr} \left[\gamma_{\mu} \psi(x) \overline{\psi}(x) \right] \text{Tr} \left[\gamma_{\mu} \psi(0) \overline{\psi}(0) \right] \right\rangle$$

- $C^{(con)}_{\mu\nu}(q)$ and $C^{(disc)}_{\mu\nu}(q)$ have individual continuum and finite volume limits
- $C^{(con)}_{\mu\nu}(q)$ can be evaluated using twisted boundary conditions

New strategy for two-flavour QCD

• QCD with $N_{\rm f} = 2$ flavours: $J_{\mu}(x) = \left(\frac{2}{3}j^{uu}_{\mu} - \frac{1}{3}j^{dd}_{\mu}\right)(x)$

 $\langle J_{\mu}(x)J_{\nu}(y)\rangle = \frac{4}{9}\left\langle j_{\mu}^{uu}j_{\nu}^{uu}\right\rangle - \frac{2}{9}\left\langle j_{\mu}^{uu}j_{\nu}^{dd}\right\rangle - \frac{2}{9}\left\langle j_{\mu}^{dd}j_{\nu}^{uu}\right\rangle + \frac{1}{9}\left\langle j_{\mu}^{dd}j_{\nu}^{dd}\right\rangle$

• Impose isospin symmetry, $m_u = m_d$, set $y \equiv 0$; Correlation function:

$$\begin{split} C_{\mu\nu}(q) &= \frac{5}{9} C_{\mu\nu}^{(\text{con})}(q) + \frac{1}{9} C_{\mu\nu}^{(\text{disc})}(q) \\ C_{\mu\nu}^{(\text{con})}(q) &= \sum_{x} e^{iq \cdot x} \left\langle \text{Tr} \left[\overline{\psi}(x) \gamma_{\mu} \psi(x) \, \overline{\psi}(0) \gamma_{\mu} \psi(0) \right] \right\rangle \\ C_{\mu\nu}^{(\text{disc})}(q) &= \sum_{x} e^{iq \cdot x} \left\langle \text{Tr} \left[\gamma_{\mu} \psi(x) \overline{\psi}(x) \right] \text{Tr} \left[\gamma_{\mu} \psi(0) \overline{\psi}(0) \right] \right\rangle \end{split}$$

Relative size of the disconnected contribution [Della Morte & Jüttner, arXiv:0910.3755]

- Compute polarisation tensor in SU(2) ChPT @ NLO
- Determine disconnected and connected contributions to $\Pi(q^2) \Pi(0)$ (enters convolution integral)

$$\Rightarrow \quad \frac{\Pi^{(\text{disc})}(q^2) - \Pi^{(\text{disc})}(0)}{\Pi^{(\text{con})}(q^2) - \Pi^{(\text{con})}(0)} = -\frac{1}{10}$$

 \rightarrow Effect of disconnected contribution estimated to be a 10% downward shift

Relative size of the disconnected contribution [Della Morte & Jüttner, arXiv:0910.3755]

- Compute polarisation tensor in SU(2) ChPT @ NLO
- Determine disconnected and connected contributions to $\Pi(q^2) \Pi(0)$ (enters convolution integral)

$$\Rightarrow \quad \frac{\Pi^{(\text{disc})}(q^2) - \Pi^{(\text{disc})}(0)}{\Pi^{(\text{con})}(q^2) - \Pi^{(\text{con})}(0)} = -\frac{1}{10}$$

 \rightarrow Effect of disconnected contribution estimated to be a 10% downward shift

Strategy to compute a_{μ}^{had} in two-flavour QCD

- Compute connected contribution using twisted boundary conditions
- Compute disconnected contribution for Fourier modes only:
 - \rightarrow validate its relative suppression predicted by ChPT

• Test runs at $\beta = 5.3$, $a = 0.069(2) \, \text{fm}$, 32×24^3 , 64×32^3 and 96×48^3

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 550 \,\mathrm{MeV}, \quad L \simeq 1.7 \,\mathrm{fm}$

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 550 \,\mathrm{MeV}, \quad L \simeq 1.7 \,\mathrm{fm}$

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 550 \,\mathrm{MeV}, \quad L \simeq 2.2 \,\mathrm{fm}$

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 420 \,\mathrm{MeV}, \quad L \simeq 2.2 \,\mathrm{fm}$

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 290 \,\mathrm{MeV}, \quad L \simeq 3.4 \,\mathrm{fm}$

• Test runs at $\beta = 5.3$, a = 0.069(2) fm, 32×24^3 , 64×32^3 and 96×48^3

 $m_{\pi} = 290 \,\mathrm{MeV}, \quad L \simeq 3.4 \,\mathrm{fm}$

- Twisted boundary stabilise fits to Q^2 -dependence and extrapolation to $\Pi(0)$
- Strong pion mass dependence; noticeable finite-volume effects

- Twisted boundary stabilise fits to Q^2 -dependence and extrapolation to $\Pi(0)$
- Strong pion mass dependence; noticeable finite-volume effects

Alternative approach

[Bernecker, Meyer]

- Relate dispersion integral to $\hat{\Pi}(Q^2) = \Pi(Q^2) \Pi(0)$ via integral transform
- Split dispersion integral into perturbative and non-perturbative part
- Compare to $N_{\rm f}=2$ lattice data by subtracting the $\phi\text{-resonance}$ from experimental data

Alternative approach

- Relate dispersion integral to $\hat{\Pi}(Q^2) = \Pi(Q^2) \Pi(0)$ via integral transform
- Split dispersion integral into perturbative and non-perturbative part
- Compare to $N_{\rm f}=2$ lattice data by subtracting the $\phi\text{-resonance}$ from experimental data

[Bernecker, Meyer]

4. Summary & Outlook

- CLS ensembles allow for comprehensive investigation of systematic effects:
 - lattice artefacts
 - finite-volume effects
- Twisted boundary conditions crucial for precision calculations of $f_+(Q^2)$
- Calculations of $(g-2)_{\mu}$ also profit from the use of twisted boundary conditions
- Pion form factor:
 - Study lattice artfacts
 - Perform chiral fits
- $(g-2)_{\mu}$:
 - Incorporate quenched strange quark
 - Estimate size of disconnected contribution