Z44

Egalitarian Improvement to Democracy Quark Renormalization Constants from Paris

Konstantin Petrov for ETMC

June 14, 2010

oduction	Democracy	H4	Running	Results	Z44
		Basics			

The Goal is to extract the operators relevant to quark momenta inside nucleus

Intro

$$\langle x^n \rangle_q = \int_0^1 \mathrm{d}x \, x^n \big(q(x) + (-1)^{n+1} \bar{q}(x) \big)$$
(1)

$$\langle x^n \rangle_{\Delta q} = \int_0^1 \mathrm{d}x \, x^n \big(\Delta q(x) + (-1)^n \Delta \bar{q}(x) \big)$$

$$\langle x^n \rangle_{\delta q} = \int_0^1 \mathrm{d}x \, x^n \big(\delta q(x) + (-1)^{n+1} \delta \bar{q}(x) \big)$$

$$q = q_{\uparrow} + q_{\downarrow}, \Delta q = q_{\uparrow} - q_{\downarrow}, \, \delta q = q_{\top} + q_{\bot}$$

x is momentum fraction carried by the quark

Introduction ●○	Democracy	H4	Running	Results	Z44
		Opera	tors		

Helicity even:

$$O_{\mu\nu} = \frac{1}{2} \left\{ \bar{q} \left[D^{0}_{\mu} \gamma^{0}_{\nu} + D^{0}_{\nu} \gamma^{0}_{\mu} - \frac{1}{2} \delta_{\mu\nu} D \right] q \right\}$$
(2)

$$\Gamma_{\mu\nu}(\boldsymbol{p}) = \frac{1}{2} \Sigma_1(\boldsymbol{p}^2) \left[\boldsymbol{p}_{\mu} \gamma_{\nu} + \boldsymbol{p}_{\nu} \gamma_{\mu} - \frac{1}{2} \delta_{\mu\nu} \boldsymbol{p} \right]$$

$$+ \Sigma_2(\boldsymbol{p}^2) \boldsymbol{p} \left[\boldsymbol{p}_{\mu} \boldsymbol{p}_{\nu} - \frac{1}{4} \delta_{\mu\nu} \boldsymbol{p}^2 \right]$$

$$(3)$$

Helicity odd:

$$O_{5\mu\nu} = \frac{1}{2} \left\{ \bar{q}\gamma_5 \left[D_{\mu}\gamma_{\nu} + D_{\nu}\gamma_{\mu} - \frac{1}{2}\delta_{\mu\nu}D \right] q \right\}$$
(4)

Introduction

Democrac

Η4

R

Re

Propagators and Green Functions:

$$\begin{split} S_{u(d)}(p) &= \sum_{x} e^{ip \cdot x} \langle \psi^{u(d)}(x) \bar{\psi}^{u(d)}(0) \rangle, \\ G_{\Gamma}^{c}(p) &= \sum_{x,y} e^{ip \cdot (x-y)} \langle \psi^{u}(x) \bar{\psi}^{u}(0) \Gamma \psi^{d}(0) \bar{\psi}^{d}(y) \rangle. \end{split}$$

RI-MOM renormalisation conditions are the following:

$$\frac{1}{Z_q} \frac{i}{12} \operatorname{Tr} \left(\frac{\sum_{\mu} \gamma_{\mu} \sin(ap_{\mu}) S^{-1}(p)}{\sum_{\mu} \sin^2(ap_{\mu})} \right)_{p^2 = \mu^2} = 1,$$
$$\frac{Z_{\Gamma}}{Z_q} \frac{1}{12} \operatorname{Tr} (\Lambda^{\Gamma}(p) P_{\Gamma})_{p^2 = \mu^2} = 1,$$
(5)

$$\Lambda^{\Gamma}(p) = S_u^{-1}(p)G_{\Gamma}^c(p)S_d^{-1}(p), \quad \Gamma P_{\Gamma} = 1.$$

Introduction 00	Democracy	H4	Running	Results	Z44
	C	ubic and	Spheric		

- Breaking of rotational invariance is very important
- Because our computers are too good
- And statistical errors on two-point functions are very small
- So systematics become very visible
- In particular for the renormalization constants
- Need some ways to make things smooth

Introduction 00	Democracy	H4	Running	Results	Z44
	D	iagonal T	hinking		

- Democracy is a popular choice (Leinweber'98)
- Pick momenta *p* such that

•
$$\frac{p^{[4]}}{(p^2)^2} < 0.3$$
 where

•
$$p^{[n]} = \sum_{\mu} p^n$$
, and $a^2 p^2 < 3$.

- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta

Introduction 00	Democracy	H4	Running	Results	Z44
	D	iagonal T	hinking		

- Democracy is a popular choice (Leinweber'98)
- Pick momenta *p* such that

•
$$\frac{p^{[4]}}{(p^2)^2} < 0.3$$
 where

•
$$p^{[n]} = \sum_{\mu} p^n$$
, and $a^2 p^2 < 3$.

- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta
- Also, democracy is mathematically impossible (Arrow'50)

Rubick's Hypercube

• First law of theoretical physics:

Introduction 00	Democracy	H4	Running	Results	Z44
	Ru	bick's Hy	percube		

- First law of theoretical physics:
- If you don't know what to do use group theory
- O(4) is broken down to H(4), discrete rotational group
- Operates on discrete momenta $p \equiv \frac{2\pi}{La} \times (n_1, n_2, n_3, n_4)$
- finite group with 4 invariants

•
$$p^{[n]} \equiv \sum_{\mu} p^{n}_{\mu}, \quad n = 2, 4, 6, 8$$

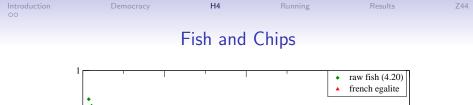
- Any polynomial function of p can be expresses as
- $F_L(p) \equiv F_L(p^{[2]}, p^{[4]}, p^{[6]}, p^{[8]}) = \frac{1}{\|O(p)\|} \sum_{p \in O(p)} F_L(p)$
- where $\|O(p)\|$ is the cardinal number of orbit $\|O(p)\|$
- which split into different *H*(4) orbits
- we can catalogue them by p^[n] invariants
- $\hat{p}^2 \approx p^2 \frac{a^2}{12}p^{[4]} + \frac{a^4}{360}p^{[6]} \frac{a^6}{20160}p^{[8]} + \cdots$
- "Democracy" is "trivial" H4 method, minimizing p^[4]

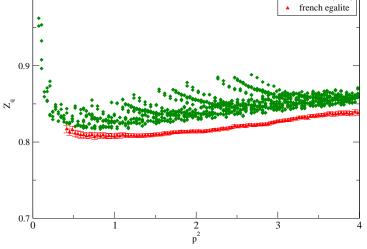
- Second law of Theoretical Physics:
- If group theory does not help assume and expand
- Assume that lattice form-factor is more-or-less smooth function of $p^{[n]}$
- Expand around continuum

$$bF_{L}(p^{2}, p^{[4]}, p^{[6]}, p^{[8]}) \approx F_{L}(p^{2}) + p^{[4]} \frac{\partial F_{L}}{\partial p^{[4]}}(p^{2}) + p^{[6]} \frac{\partial F_{L}}{\partial p^{[6]}}(p^{2}) + (p^{[4]})^{2} \frac{\partial^{2} F_{L}}{\partial^{2} p^{[4]}}(p^{2}) + \cdots$$

Introduction 00	Democracy	H4	Running	Results	Z44
	H4 G	lobal Pre	escription		

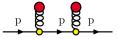
- extrapolate the lattice data to get $F_L(p^2, 0, 0, 0)$
- by using linear regression at fixed p^2
- impossible to do for all values of p^2
- so need to pick window of momenta
- scale it according to χ^2
- check validity by analyzing smoothness of the result
- watch the disappearance of the rib-cage





Introduction O Democracy H4 Running Results Z44 $< A^2 > {
m correction}$ to the quark propagator

Diagram:



where red bubble is VEV. At zero quark mass:

$$\frac{-i\not}{p^2} \left(\sum_{\mu=1,a=1}^{\mu=4,a=8} ig \frac{\lambda_a}{2} \mathcal{A}^a \frac{-i\not}{p^2} ig \frac{\lambda_a}{2} \mathcal{A}^a \right) \frac{-i\not}{p^2} = -\frac{g^2}{12} \frac{\langle \mathcal{A}^2 \rangle}{p^2} \times \frac{-i\not}{p^2}$$
(6)

so that non-perturbative contribution at tree level is:

$$<(A^{a}_{\mu})^{2}>=, \qquad <(A\cdot\hat{p})^{2}>=$$

Introduction Democracy H4 Running **Results** 00

$< A^2 >$ correction to the vertex function

Now consider:

where black bubble is an inserted operator (1, γ_{μ} , γ_5 etc.) One can show that for cases $\Gamma = 1, \gamma_5$ the non-perturbative contribution is, after averaging over all directions:

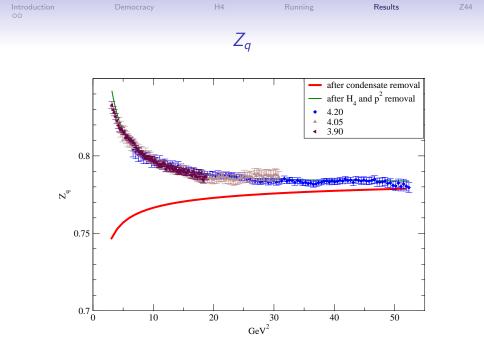
$$-g^{2}\frac{4}{3\times8}\frac{f_{ave}(p)}{(p^{2})^{2}} < f_{ave}(A) >$$
(7)

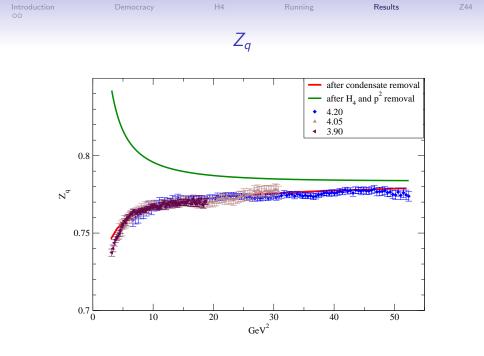
where $f_{ave}(p) = \pm p^2$ and $\langle f_{ave}(A) \rangle = \pm \langle A_a^2 \rangle$ for scalar/pseudoscalar channels.

Introduction 00	Democracy	H4	Running	Results	Z44
		Nume	rics		

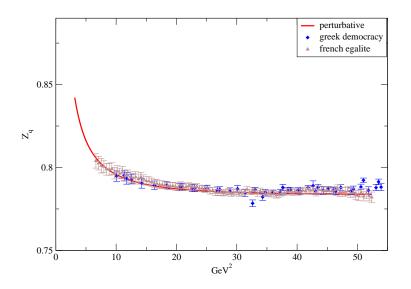
V	<i>a</i> , fm	β	а μ
$24^3 \times 48$	0.055	4.2	0.002
$24^3 \times 48$	0.0675	4.05	0.006
$24^3 \times 48$	0.083	3.9	0.004

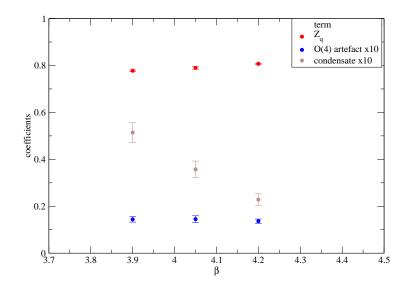
- two-flavour ETMC lattices
- 100 thermalized configurations
- distance 10 between configurations
- all data is rescaled by overall matching coefficient
- which is usually roughly 1.01(1)
- compatible with contribution from leading log (Chetyrkin/Maier)

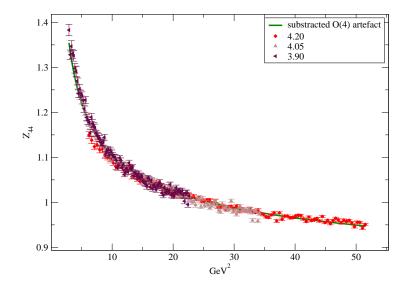




Greek Democracy vs. French Egalite







Z44

Conclusions and Outlook

- Thorough analysis of quark renormalization constants
- Solid method for elimination of hypercubic artefacts
- O(4) symmetric artefact is *a*-independent, as expected
- Good agreement with perturbation theory
- Condensate exists for Z_q , questionable for Z_{44}
- Need to complete analysis for Z14/Z514
- And extend it to the 2+1+1 using all momenta
- Likely to be performed on our upcoming FermiSea cluster (4x4) at CEA