Egalitarian Improvement to Democracy
 Quark Renormalization Constants from Paris

Konstantin Petrov for ETMC

June 14, 2010

Basics

The Goal is to extract the operators relevant to quark momenta inside nucleus

$$
\begin{gather*}
\left\langle x^{n}\right\rangle_{q}=\int_{0}^{1} \mathrm{~d} x x^{n}\left(q(x)+(-1)^{n+1} \bar{q}(x)\right) \tag{1}\\
\left\langle x^{n}\right\rangle_{\Delta q}=\int_{0}^{1} \mathrm{~d} x x^{n}\left(\Delta q(x)+(-1)^{n} \Delta \bar{q}(x)\right) \\
\left\langle x^{n}\right\rangle_{\delta q}=\int_{0}^{1} \mathrm{~d} x x^{n}\left(\delta q(x)+(-1)^{n+1} \delta \bar{q}(x)\right) \\
q=q_{\uparrow}+q_{\downarrow}, \Delta q=q_{\uparrow}-q_{\downarrow}, \delta q=q_{\top}+q_{\perp}
\end{gather*}
$$

x is momentum fraction carried by the quark

Operators

Helicity even:

$$
\begin{align*}
O_{\mu \nu}= & \frac{1}{2}\left\{\bar{q}\left[D_{\mu}^{0} \gamma_{\nu}^{0}+D_{\nu}^{0} \gamma_{\mu}^{0}-\frac{1}{2} \delta_{\mu \nu} \not \subset\right] q\right\} \tag{2}\\
\Gamma_{\mu \nu}(p) & =\frac{1}{2} \Sigma_{1}\left(p^{2}\right)\left[p_{\mu} \gamma_{\nu}+p_{\nu} \gamma_{\mu}-\frac{1}{2} \delta_{\mu \nu} \not p\right] \\
& +\Sigma_{2}\left(p^{2}\right) \not p\left[p_{\mu} p_{\nu}-\frac{1}{4} \delta_{\mu \nu} p^{2}\right] \tag{3}
\end{align*}
$$

Helicity odd:

$$
\begin{equation*}
O_{5 \mu \nu}=\frac{1}{2}\left\{\bar{q} \gamma_{5}\left[D_{\mu} \gamma_{\nu}+D_{\nu} \gamma_{\mu}-\frac{1}{2} \delta_{\mu \nu} \not \subset\right] q\right\} \tag{4}
\end{equation*}
$$

Propagators and Green Functions:

$$
\begin{aligned}
S_{u(d)}(p) & =\sum_{x} e^{i p \cdot x}\left\langle\psi^{u(d)}(x) \bar{\psi}^{u(d)}(0)\right\rangle, \\
G_{\Gamma}^{c}(p) & =\sum_{x, y} e^{i p \cdot(x-y)}\left\langle\psi^{u}(x) \bar{\psi}^{u}(0) \Gamma \psi^{d}(0) \bar{\psi}^{d}(y)\right\rangle .
\end{aligned}
$$

RI-MOM renormalisation conditions are the following:

$$
\begin{array}{r}
\frac{1}{Z_{q}} \frac{i}{12} \operatorname{Tr}\left(\frac{\sum_{\mu} \gamma_{\mu} \sin \left(a p_{\mu}\right) S^{-1}(p)}{\sum_{\mu} \sin ^{2}\left(a p_{\mu}\right)}\right)_{p^{2}=\mu^{2}}=1, \\
\frac{Z_{\Gamma}}{Z_{q}} \frac{1}{12} \operatorname{Tr}\left(\Lambda^{\Gamma}(p) P_{\Gamma}\right)_{p^{2}=\mu^{2}}=1, \tag{5}\\
\Lambda^{\ulcorner }(p)=S_{u}^{-1}(p) G_{\Gamma}^{c}(p) S_{d}^{-1}(p), \quad\left\ulcorner P_{\Gamma}=1 .\right.
\end{array}
$$

Cubic and Spheric

- Breaking of rotational invariance is very important
- Because our computers are too good
- And statistical errors on two-point functions are very small
- So systematics become very visible
- In particular for the renormalization constants
- Need some ways to make things smooth

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta p such that
- $\frac{p^{[4]}}{\left(p^{2}\right)^{2}}<0.3$ where
- $p^{[n]}=\sum_{\mu} p^{n}$, and $a^{2} p^{2}<3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta

Diagonal Thinking

- Democracy is a popular choice (Leinweber'98)
- Pick momenta p such that
- $\frac{p^{[4]}}{\left(p^{2}\right)^{2}}<0.3$ where
- $p^{[n]}=\sum_{\mu} p^{n}$, and $a^{2} p^{2}<3$.
- Works quite well, but as usual in democracy
- Voter turnout is small
- We loose information from many momenta
- Also, democracy is mathematically impossible (Arrow'50)

Rubick's Hypercube

- First law of theoretical physics:

Rubick's Hypercube

- First law of theoretical physics:
- If you don't know what to do - use group theory
- $\mathrm{O}(4)$ is broken down to $\mathrm{H}(4)$, discrete rotational group
- Operates on discrete momenta $p \equiv \frac{2 \pi}{L a} \times\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$
- finite group with 4 invariants
- $p^{[n]} \equiv \sum_{\mu} p_{\mu}^{n}, \quad n=2,4,6,8$

Orbitology

- Any polynomial function of p can be expresses as
- $F_{L}(p) \equiv F_{L}\left(p^{[2]}, p^{[4]}, p^{[6]}, p^{[8]}\right)=\frac{1}{\|O(p)\|} \sum_{p \in O(p)} F_{L}(p)$
- where $\|O(p)\|$ is the cardinal number of orbit $\|O(p)\|$
- which split into different $H(4)$ orbits
- we can catalogue them by $p^{[n]}$ invariants
- $\hat{p}^{2} \approx p^{2}-\frac{a^{2}}{12} p^{[4]}+\frac{a^{4}}{360} p^{[6]}-\frac{a^{6}}{20160} p^{[8]}+\cdots$
- "Democracy" is "trivial" H4 method, minimizing $p^{[4]}$

Globalization

- Second law of Theoretical Physics:
- If group theory does not help - assume and expand
- Assume that lattice form-factor is more-or-less smooth function of $p^{[n]}$
- Expand around continuum

$$
\begin{aligned}
b F_{L}\left(p^{2}, p^{[4]}, p^{[6]}, p^{[8]}\right) \approx & F_{L}\left(p^{2}\right)+p^{[4]} \frac{\partial F_{L}}{\partial p^{[4]}}\left(p^{2}\right)+ \\
& p^{[6]} \frac{\partial F_{L}}{\partial p^{[6]}}\left(p^{2}\right)+\left(p^{[4]}\right)^{2} \frac{\partial^{2} F_{L}}{\partial^{2} p^{[4]}}\left(p^{2}\right)+\cdots
\end{aligned}
$$

H4 Global Prescription

- extrapolate the lattice data to get $F_{L}\left(p^{2}, 0,0,0\right)$
- by using linear regression at fixed p^{2}
- impossible to do for all values of p^{2}
- so need to pick window of momenta
- scale it according to χ^{2}
- check validity by analyzing smoothness of the result
- watch the disappearance of the rib-cage

Fish and Chips

$<A^{2}>$ correction to the quark propagator

Diagram:

where red bubble is VEV. At zero quark mass:

$$
\begin{equation*}
\frac{-i p}{p^{2}}\left(\sum_{\mu=1, a=1}^{\mu=4, a=8} i g \frac{\lambda_{a}}{2} A^{a} \frac{-i p}{p^{2}} i g \frac{\lambda_{a}}{2} A^{a}\right) \frac{-i p}{p^{2}}=-\frac{g^{2}}{12} \frac{A^{2}>}{p^{2}} \times \frac{-i p}{p^{2}} \tag{6}
\end{equation*}
$$

so that non-perturbative contribution at tree level is:

$$
<\left(A_{\mu}^{a}\right)^{2}>=<A^{2} / 32>, \quad<(A \cdot \hat{P})^{2}>=<A^{2} / 4>
$$

$<A^{2}>$ correction to the vertex function

Now consider:

where black bubble is an inserted operator ($1, \gamma_{\mu}, \gamma_{5}$ etc.) One can show that for cases $\Gamma=1, \gamma_{5}$ the non-perturbative contribution is, after averaging over all directions:

$$
\begin{equation*}
-g^{2} \frac{4}{3 \times 8} \frac{f_{\text {ave }}(p)}{\left(p^{2}\right)^{2}}<f_{\text {ave }}(A)> \tag{7}
\end{equation*}
$$

where $f_{\text {ave }}(p)= \pm p^{2}$ and $<f_{\text {ave }}(A)>= \pm<A_{a}^{2}>$ for scalar/pseudoscalar channels.

Numerics

V	a, fm	β	$a \mu$
$24^{3} \times 48$	0.055	4.2	0.002
$24^{3} \times 48$	0.0675	4.05	0.006
$24^{3} \times 48$	0.083	3.9	0.004

- two-flavour ETMC lattices
- 100 thermalized configurations
- distance 10 between configurations
- all data is rescaled by overall matching coefficient
- which is usually roughly $1.01(1)$
- compatible with contribution from leading log (Chetyrkin/Maier)

$$
Z_{q}
$$

$$
Z_{q}
$$

Greek Democracy vs. French Egalite

Austerity and Stability

Z44

Conclusions and Outlook

- Thorough analysis of quark renormalization constants
- Solid method for elimination of hypercubic artefacts
- $O(4)$ symmetric artefact is a-independent, as expected
- Good agreement with perturbation theory
- Condensate exists for Z_{q}, questionable for Z_{44}
- Need to complete analysis for Z14/Z514
- And extend it to the $2+1+1$ using all momenta
- Likely to be performed on our upcoming FermiSea cluster (4×4) at CEA

