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Lattice SUSY:  Emerging FieldLattice SUSY:  Emerging Field

Computational resources now allow dynamical fermions

Lattice SUSY
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Lattice formulations that reduce/eliminate fine-tuning



Lattice Wess Zumino modelLattice Wess-Zumino model
 With Ginsparg-Wilson fermions [Fujikawa, Ishibashi 01; 

Fujikawa 02; Bonini, Feo 04; Kikukawa, Suzuki 04]

 Preserves U(1)R symmetry (limits counterterms)

1 l  l (Ch  Ch ) d 1-loop nonrenormalization (Chen Chen) and

 GPU simulation code (Eric Dzienkowski)
Zφ = Zχ 6= ZF Consistent with previous studies

 GPU simulation code (Eric Dzienkowski)

 Early results collected in [1005.3276]

 Very small violation of SUSY  g=1/10:Very small violation of SUSY, g 1/10:
1
V

P
xhF (x)i = O(10−3)



Lattice derivative operatorsLattice derivative operators
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Lattice action without fine tuningLattice action without fine-tuning
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Lattice action with fine-tuning 
( i )(massive)
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•Impose CP, gives only real parameters
•Fix m1, y1
•Still have 8 parameters to fine-tune



Lattice action with fine-tuning 
( l )(massless)

In the limit m1 → 0 we can impose the U(1)R symmetry. This restricts the
action to
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Fix y1, fine-tune two parametersp



One loop calculationOne-loop calculation
 No mass counterterms, no coupling counterterms, only 

wavefunction renormalization

Zφ − 1 = limp→0 Σφ(p)/p
2

φ p→0 φ(p)/p

Zχ − 1 = lim6p→0 Σχ(p)/ 6p

( )ZF − 1 = limp→0 ΣF (p)



Example:  scalar self energyExample:  scalar self energy

ma (Zφ − 1)(∞)/|g|2 (Zφ − 1)(8)/|g|2ma (Zφ 1)(∞)/|g| (Zφ 1)(8)/|g|
0.5 -0.00589 -0.006355
0.25 -0.00884 -0.009532
0.125 -0.01205 -0.013358
0.0625 -0.01573 -0.017541
0.03125 -0.01986 -0.021837
0.015625 -0.02573 -0.026205
0.0078125 -0.02956 -0.030583
0.00390625 -0.03370 –
0.001953125 -0.03671 –

Table 1: Wavefunction counterterm from self-energy for the scalar, for L = ∞
and mL = 8.



W h fit th L i l d t ith ≤ 0 125 tWe have fit the L =∞ numerical data with ma ≤ 0.125 to

f(ma) = c0 ln(ma) + c1ma+ c2(ma)
2

Giving the data points equal weight, the fit for the scalar self energy is

c0 = 0.00604(7), c1 = 0.024(20), c2 = −0.15(17)

while for the fermion the fit is

c0 = 0.00597(5), c1 = 0.061(15), c2 = −0.39(12)c0 0.00597(5), c1 0.061(15), c2 0.39(12)

Thus we see that at L → ∞ the log divergences of the scalar Zφ − 1 and the
fermion Zχ − 1 match. For the auxiliary field we obtain instead

c0 = −0.0261(5), c1 = 0.87(11), c2 = −3.9(1.0)

so that its ZF − 1 does not match the scalar and fermion. This is consistentso that its ZF 1 does not match the scalar and fermion. This is consistent
with the results found in [Kikukawa, Suzuki 04].



Monte Carlo simulationMonte Carlo simulation
 In addition to the perturbative analysis, we have developed 

simulation code to run on graphics processing units (GPUs) 
that are CUDA enabled

 What we have is RHMC code that works with scalars and  What we have is RHMC code that works with scalars and 
spinors that reside on the card

 We have benchmarks for the code and have run various 
checks

 Serious simulations and analysis still needs to be done



Nvidia GTX 285Nvidia GTX 285

 240 cores, $450, 200W

4 of the 30 MPUs

Each MPU has 8 single prec
cores and 1 double prec core

http://www.nvidia.com/object/product_geforce_gtx_285_us.html

“The most powerful single GPU on the planet for gaming and beyond.”



GPU BenchmarksGPU Benchmarks

Lattice CPU GPU (CUDA) GPU (Ours) CPU GPU (CUDA) GPU (Ours)
single single single double double double

83 32 1 1 6 9 24 0 94 4 4 1183 × 32 1.1 6.9 24 0.94 4.4 11
163 × 32 0.88 14 71 0.69 10 35
323 × 64 0.11 20 – 0.085 10 –

Table 1: Comparison of timing, Gflop/s, for fast fourier transform of the spinor
field. Both single and double precision results are given.



PreconditioningPreconditioning

At weak couplings, we expect that preconditioning by the inverse of the free
theory fermion matrix M0 will improve convergence of the conjugate gradient
solver. For this purpose, we re-express the problem

M †M bM †Mx = b

as follows:
(M−1†

0 M †)(MM−1
0 )(M0x) = (M

−1†
0 b)(M0 M )(MM0 )(M0x) (M0 b)



Large speed upLarge speed-up

Lattice Precision NPC secs. NPC iters. Gflop/s PC secs. PC iters. Gflop/s speed-up
83 × 32 single 1.3 830 14 0.038 8 17 34
83 × 32 double 4.9 1600 7.2 0.13 15 8.1 38
163 × 32 single 7.1 870 25 0.20 8 31 36
163 × 32 double 31 1800 12 0.74 15 13 42
323 × 64 single 420 1600 14 6.8 8 15 62
323 64 d bl 2200 3900 6 5 25 15 7 0 86323 × 64 double 2200 3900 6.5 25 15 7.0 86

Table 1: Timing benchmarks at m = 1, g = 1/5. PC indicates preconditioning
whereas NPC is the inversion without preconditioning The time in secondswhereas NPC is the inversion without preconditioning. The time in seconds
and the number of iterations (iters.) is for convergence. The criterion for
convergence is that the relative residual is less than 1×10−6 for single precision
and less than 1× 10−12 for double precision. The speed-up is the ratio of NPCp p p
time to PC time.



ConclusionsConclusions
 Reasonable fine-tuning in massless limit

 Working, fairly fast GPU code

 Large speed-up from preconditioning

 Next:  parameter space scans

m2
2, λ1

to obtain h∂μSμ(x)O(0)i ≈ 0

and degeneracy in fermion/boson effective mass


