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Introduction

In QCD, the topological susceptibility (χt) is the most important quantity
to measure the topological charge fluctuation of the QCD vacuum,
which plays an important role in breaking the UA(1) symmetry.

χt =

∫

d4x{ρ(x)ρ(0)} =

〈

Q2
t

〉

Ω
(1)

ρ(x) =
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)], Qt =

∫

d4x ρ(x) (2)

(Σ: chiral condensate; Qt: top. charge; ρ: top. charge density; Ω: lattice volume)

In ChPT, χt for Nf = 2 at the tree level [ Leutwyler & Smilga (’92) ] and NLO
[ Mao & Chiu, PRD (’09) ] are:

χt/mu = Σ(1 + mu/md)
−1 (3)

χt/mu =
Σ

2

[

1 + 3

(

M2
π

32π2F 2
π

)

ln
M2

π

µ2
sub

− (2K6 + 2K7 + K8)mq

]−1

(4)

• χt is suppressed due to internal quark loops in the chiral limit
• It provides a viable way to extract Σ from χt in the chial limit.

– p. 2/17



Introduction (cont.)

The second normalized cumulant (c4) is defined as

c4 = −
1

Ω

[

〈

Q4
t

〉

− 3
〈

Q2
t

〉2
]

(5)

• The leading anomalous contribution to the η′ − η′ scattering
amplitude in QCD.

• The dependence of the vacuum energy on the vacuum angle θ.

In ChPT, c4 for Nf = 2 at the tree level is
[ Mao & Chiu, PRD (’09); Aoki & Fukaya, arXiv:0906.4852 ]:

c4 = −Σ(m−3
u + m−3

d )(m−1
u + m−1

d )−1 (6)

If one can determine Qt for each gauge configuration, then one can
obtain χt and c4 from Eq.(1) and Eq.(5), respectively.
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Introduction (cont.)

In this work:
• We determine Qt and χt from gauge confs. of 2 flavors

lattice QCD simulation with ODWF.
[ Chiu, PRL (03); hep-lat/0303008 ]

• Lattice size: 163 × 32× 16, with Wilson gauge action at
β = 5.90.

• Sea quark masses: mqa = 0.01, 0.02, 0.03, 0.04, 0.05, and
0.08.

• We determine Qt via the low-mode projection of the lattice
Dirac operator, using the Thick-Restart Lanczos algorithm.
[ Wu & Simon, SIAM J. Matrix Anal. Appl. (00) ]
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Introduction (cont.)

Instead of doing the projection on the 5-D ODWF Dirac operator, we
perform the low-mode projection on its effective 4-D operator D (i.e.,
the overlap Dirac operator with Zolotarev optimal approximation):

D = m0(1 + V ), V ≡ γ5HwRZ(Hw)
Ns→∞
−→ γ5 sign(Hw) (7)

Then one can solve the eigen-problem of D:

D
∣

∣θ
〉

= λ(θ)
∣

∣θ
〉

, λ(θ) = m0(1 + eiθ) (8)

Noting that since [DD†, γ5] = 0, one can decompose the eigen
problem of DD† into + and − chiralities. Then one can derive:

S±

∣

∣θ
〉

±
≡ P±HwRZ(Hw)P±

∣

∣θ
〉

±
= ± cos θ

∣

∣θ
〉

±
(9)

where
∣

∣θ
〉

= P+

∣

∣θ
〉

+ P−

∣

∣θ
〉

=
∣

∣θ
〉

+
+

∣

∣θ
〉

−
. Thus, one can perform the

eigenmode projection on the operator S± instead of Eq.(8). Moreover,
∣

∣θ
〉

±
are related to each other:

∣

∣θ
〉

=
1

i sin θ
(V − e−iθ)

∣

∣θ
〉

+
for θ 6= 0,±π,±2π, . . . (10)

– p. 5/17



Strategy of projection:

D
∣

∣θ
〉

= λ(θ)
∣

∣θ
〉

, λ(θ) = m0(1 + eiθ)

• Project the smallest eigenmodes of S+

∣

∣θ
〉

+
= cos θ

∣

∣θ
〉

+
. If D has

zero modes in positive chirality, the smallest eigenvalues will have
values ' −1.

• If D has zero modes in positive chirality, use Eq.(10) to compute
the whole eigenvectors of D.

• If D does not have zero modes in positive chirality, then they may
appear in negative chirality:
◦ Project the largest eigenmodes of S−

∣

∣θ
〉

−
= − cos θ

∣

∣θ
〉

−
. If

there are zero modes in negative chirality, the largest
eigenvalues will have values ' +1.

◦ Form the whole eigenvectors of D from
∣

∣θ
〉

+
and

∣

∣θ
〉

−
.
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Low-mode projection

To project the low-lying eigenmodes of a large sparse matrix:

Ax = xλ (11)

one construct an orthonormal basis from the Krylov subspace, starting
from the initial vector r0:

K(A, r0) =
〈

r0, Ar0, A
2r0, . . . , A

m−1r0

〉

(12)

This basis, the linear combination of {Air0, i = 0, 1, . . .m− 1}, are the
Ritz vectors (the approximated eigenvectors) of A.

The Lanczos algorithm is the standard procedure to perform
orthonormalization on the subspace K(A, r0), dedicated for A† = A.
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Basic Lanczos algorithm

Basic Lanczos iteration:

Input: r0, β0 = ||r0||, q0 = 0

For: i = 1, 2, . . .

• qi = ri−1/βi−1

• p = Aqi

• αi = qH
i p

• ri = p− αiqi − βi−1qi−1

• βi = ||ri||

In this iteration, we are constructing:

AQm = QmTm + βmqm+1e
T
m

Qm = [q1, q2, . . . , qm]

Tm =

















α1 β1 0 · · · · · ·

β1 α2 β2 0 · · ·

0 β2 α3 β3 · · ·

. . .
. . .

. . .
. . .

. . .

















with q1, q2, . . . , qm form a (orthonor-
mal) complete set of a m dimensional
subspace.
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Basic Lanczos algorithm

Then the Ritz pairs (λ̂i, x̂i) can be abtained from

T̂m = U †
mTmUm, Xm = QmUm

where T̂m is diagonal with eigenvalues λ̂i, Um is unitary, and Xm has
columns x̂i. When m→∞, (λ̂i, x̂i)→ (λi, xi)

However, the basic Lanczos algorithm suffers the following problems:

1. Some Ritz values may repeatedly appear when m goes larger.
• qi loses orthogonality rapidly in the finite precision arithmatics.
• Re-orthogonal qi during the iteration.

2. It requires a lot of columns qi in order to project several Ritz pairs.
• Restart the Lanczos process in a fixed m dimensional

subspace.
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Thick-Restart Lanczos algorithm

Suppose that we try to project k′ eigenpairs of A within the m

dimensional Krylov subspace:

AQm = QmTm + βmqm+1e
T
m (13)

Then we truncate the dimenstion of the subspace to k and restart the
Lanczos iteration (k, k′ < m):

Lanczos
mk

The update of the T matrix

Lanczos
m

m

m

truncatediagonalize

k

k

k

k

The 1st loop

After restart

The schematic diagram for the Thick-Restart Lanczos process.
The non-zero values of the T matrix are illustrated as black lines.
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Thick-Restart Lanczos algorithm

1. Given a starting vector r0, perform the Lanczos process to
construct Eq.(13). The Gram-Schmidt procedure is performed to
ensure the orthogonalization of qi.

2. Diagonalize Tm: Tm = U †
mT̂mUm.

3. Pick the first k columns of U , and let Q̂k = QmUk:

AQ̂k = Q̂kT̂k + βmq̂k+1s
†, q̂k+1 = qm+1, s = U †

mem

i.e., truncate the dimension of subspace from m to k.

4. Restart the Lanczos process, with the next basis constructed by:

β̂k+1q̂k+2 = r̂k+1 = (I − Q̂k+1Q̂
†
k+1)Aq̂k+1 (14)

Then extend the Krylov subspace from dimension k + 1 to m via
the Lanczos process.

– p. 11/17



Adaptive Thick-Restart Lanczos algorithm

The performance of TRLan depends on the setting of k for a given
eigen-problem and the dimension m of the Krylov subpace. It is
instructive to search for the optimal value of k such that the following
object function f(k) is maximized, in order to attain the maximum
performance: [ Yamazaki, Bai, Simon, Wang, Wu, Tech. Rep. LBNL-1059E (08) ]

f(k) =
The reduction factor dj of the residule of jth Ritz pair

# of FPO
(15)

Suppose that for the j-th (non-converged) Ritz pair, its residules at
(l − 1)-th and l-th restarts are related by the reduction factor dj :

β
(l)
j = β

(l−1)
j /dj , dj ' Cm−k(1 + 2γe), γe =

λ̂
(l)
k+1 − λ̂

(l)
j

λ̂
(l)
m − λ̂

(l)
k+1

(16)

where Cn(z) is the Chebyshev polynomial of degree n.
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Adaptive Thick-Restart Lanczos algorithm

For the # of FPO in each restart, we only count the dominated parts:

• Reorthogonalization: qj ← (I −Qj−1Q
H
j−1)qj , j = k + 1, . . . , m.

• Update of Ritz vectors: Q̂k = QmUk.

Salient features of Adaptive TRLan algorithm:

• The dimension of the subspace m is kept finite.

• The reorthogonalization of subspace Qk is imposed in order to
prevent obtaining specious Ritz values.

• The info. of the wanted eigenmodes (within dimension k) in the
previous loop is fully used to improve the Ritz pairs after restart.

• The dimension of the truncated subspace k is dynamically
adjusted for each restart, in order to attain the max. performance.

• It is numerically more reliable, and easier to implement,
comparing to the other Restart schemes.
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Benchmark

For one of the gauge confs. simulated at 163 × 32× 16, β = 5.9,
mqa = 0.01, which possess top. charge Qt = 3, we perform the
benchmark on low-mode projections for Hw and S+, respectively.

(Intel Xeon E5530 @ 2.4GHz, 8 cores, 24GB memory)

• Hw: k′ = 240, m = 340

method # of restarts # of Av time(s) speed up

ARPACK 388 35390 136460 1.00

TRLan 999 100140 572951 0.24

ν-TRLan 383 59145 78058 1.75

• S+: k′ = 100, m = 200, np = 240

method # of restarts # of Av time(s) speed up

ARPACK 13 1050 112632 1.00

TRLan 12 1300 105790 1.06

ν-TRLan 11 1030 90496 1.24

k′: # of required eigenmodes; m: dim. of subspace; np: # of eigenmodes of Hw for preconditioning
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Benchmark

ν-TRLan: k v.s. nconv for Hw projection
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ν-TRLan: k v.s. nconv for S+ projection
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Adaptive Thick-Restart Lanczos: The change of k with respect to the
number of converged eigenmodes (nconv), for the projection of Hw and
S+, respectively.
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Topological susceptibility

(preliminary)
• Fitting our data of χt to Eq.(3), we get a3Σ = 0.0031(4).

• Using a−1 = 1590(20) MeV, Zm = 0.85(1)(2), we transcribe Σ to:

ΣMS(2 GeV) = [247(11)(12) MeV]3 (17)
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Concluding Remarks

• We determine Qt and χt from gauge confs. of 2 flavors lattice
QCD simulation with ODWF, on the lattice 163 × 32× 16 with
Wilson gauge action at β = 5.90.

• We use Adaptive Thick-Restart Lanczos algorithm to do the
low-mode projection on Hw and S± operators, which can attain
1.7 - 2.0 (for Hw) and 1.2 - 1.4 (for S±) times faster than ARPACK.

• Our preliminary result of χt agrees with the sea-quark mass
dependence predicted by the chiral perturbation theory, from
which we can extract the chiral condensate.

• Our statistics is still too small to determine c4 unambigously.

• We plan to port the ν-TRLan code to the GPU.
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