Topological charge in 2 flavors QCD with optimal domain-wall fermion

Tung-Han Hsieh¹, Ting-Wai Chiu², Yao-Yuan Mao², Kenji Ogawa² (for TWQCD Collaboration)

¹ Research Center for Applied Sciences, Academia Sinica
 ² Department of physics, National Taiwan University

Introduction

In QCD, the topological susceptibility (χ_t) is the most important quantity to measure the topological charge fluctuation of the QCD vacuum, which plays an important role in breaking the $U_A(1)$ symmetry.

$$\chi_t = \int d^4 x \{ \rho(x) \rho(0) \} = \frac{\langle Q_t^2 \rangle}{\Omega}$$
(1)

$$\rho(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\lambda\sigma} \operatorname{tr}[F_{\mu\nu}(x)F_{\lambda\sigma}(x)], \qquad Q_t = \int d^4x \,\rho(x) \qquad (2)$$

(Σ : chiral condensate; Q_t : top. charge; ρ : top. charge density; Ω : lattice volume) In ChPT, χ_t for $N_f = 2$ at the tree level [Leutwyler & Smilga ('92)] and NLO [Mao & Chiu, PRD ('09)] are:

$$\chi_t / m_u = \Sigma (1 + m_u / m_d)^{-1}$$
 (3)

$$\chi_t/m_u = \frac{\Sigma}{2} \left[1 + 3 \left(\frac{M_\pi^2}{32\pi^2 F_\pi^2} \right) \ln \frac{M_\pi^2}{\mu_{sub}^2} - (2K_6 + 2K_7 + K_8)m_q \right]^{-1}$$
(4)

• χ_t is suppressed due to internal quark loops in the chiral limit

• It provides a viable way to extract Σ from χ_t in the chial limit.

Introduction (cont.)

The second normalized cumulant (c_4) is defined as

$$c_4 = -\frac{1}{\Omega} \left[\left\langle Q_t^4 \right\rangle - 3 \left\langle Q_t^2 \right\rangle^2 \right] \tag{5}$$

- The leading anomalous contribution to the $\eta' \eta'$ scattering amplitude in QCD.
- The dependence of the vacuum energy on the vacuum angle θ .

In ChPT, c_4 for $N_f = 2$ at the tree level is [Mao & Chiu, PRD ('09); Aoki & Fukaya, arXiv:0906.4852]:

$$c_4 = -\Sigma (m_u^{-3} + m_d^{-3})(m_u^{-1} + m_d^{-1})^{-1}$$
(6)

If one can determine Q_t for each gauge configuration, then one can obtain χ_t and c_4 from Eq.(1) and Eq.(5), respectively.

Introduction (cont.)

In this work:

- We determine Q_t and χ_t from gauge confs. of 2 flavors lattice QCD simulation with ODWF.
 [Chiu, PRL (03); hep-lat/0303008]
- Lattice size: $16^3 \times 32 \times 16$, with Wilson gauge action at $\beta = 5.90$.
- Sea quark masses: $m_q a = 0.01, 0.02, 0.03, 0.04, 0.05, and 0.08.$
- We determine Q_t via the low-mode projection of the lattice Dirac operator, using the Thick-Restart Lanczos algorithm.
 [Wu & Simon, SIAM J. Matrix Anal. Appl. (00)]

Introduction (cont.)

Instead of doing the projection on the 5-D ODWF Dirac operator, we perform the low-mode projection on its effective 4-D operator D (i.e., the overlap Dirac operator with Zolotarev optimal approximation):

$$D = m_0(1+V), \qquad V \equiv \gamma_5 H_w R_Z(H_w) \xrightarrow{N_s \to \infty} \gamma_5 \operatorname{sign}(H_w) \quad (7)$$

Then one can solve the eigen-problem of D:

$$D|\theta\rangle = \lambda(\theta)|\theta\rangle, \qquad \lambda(\theta) = m_0(1+e^{i\theta})$$
 (8)

Noting that since $[DD^{\dagger}, \gamma_5] = 0$, one can decompose the eigen problem of DD^{\dagger} into + and – chiralities. Then one can derive:

$$S_{\pm} |\theta\rangle_{\pm} \equiv P_{\pm} H_w R_Z(H_w) P_{\pm} |\theta\rangle_{\pm} = \pm \cos \theta |\theta\rangle_{\pm}$$
(9)

where $|\theta\rangle = P_+|\theta\rangle + P_-|\theta\rangle = |\theta\rangle_+ + |\theta\rangle_-$. Thus, one can perform the eigenmode projection on the operator S_{\pm} instead of Eq.(8). Moreover, $|\theta\rangle_+$ are related to each other:

$$|\theta\rangle = \frac{1}{i\sin\theta} (V - e^{-i\theta})|\theta\rangle_{+} \qquad \text{for } \theta \neq 0, \pm \pi, \pm 2\pi, \dots$$
 (10)

Strategy of projection:

$$D|\theta\rangle = \lambda(\theta)|\theta\rangle, \qquad \lambda(\theta) = m_0(1+e^{i\theta})$$

- Project the smallest eigenmodes of $S_+ |\theta\rangle_+ = \cos \theta |\theta\rangle_+$. If *D* has zero modes in positive chirality, the smallest eigenvalues will have values $\simeq -1$.
- If D has zero modes in positive chirality, use Eq.(10) to compute the whole eigenvectors of D.
- If D does not have zero modes in positive chirality, then they may appear in negative chirality:
 - Project the largest eigenmodes of $S_{-}|\theta\rangle_{-} = -\cos \theta |\theta\rangle_{-}$. If there are zero modes in negative chirality, the largest eigenvalues will have values $\simeq +1$.

 \circ Form the whole eigenvectors of *D* from $|\theta\rangle_+$ and $|\theta\rangle_-$.

Low-mode projection

To project the low-lying eigenmodes of a large sparse matrix:

$$Ax = x\lambda \tag{11}$$

one construct an orthonormal basis from the Krylov subspace, starting from the initial vector r_0 :

$$\mathcal{K}(A, r_0) = \left\langle r_0, Ar_0, A^2 r_0, \dots, A^{m-1} r_0 \right\rangle$$
 (12)

This basis, the linear combination of $\{A^i r_0, i = 0, 1, \dots, m-1\}$, are the Ritz vectors (the approximated eigenvectors) of A.

The Lanczos algorithm is the standard procedure to perform orthonormalization on the subspace $\mathcal{K}(A, r_0)$, dedicated for $A^{\dagger} = A$.

Basic Lanczos algorithm

Basic Lanczos iteration:

Input: r_0 , $\beta_0 = ||r_0||$, $q_0 = 0$ For: i = 1, 2, ...

- $q_i = r_{i-1}/\beta_{i-1}$
- $p = Aq_i$
- $\alpha_i = q_i^H p$

•
$$r_i = p - \alpha_i q_i - \beta_{i-1} q_{i-1}$$

•
$$\beta_i = ||r_i||$$

In this iteration, we are constructing:

$$AQ_m = Q_m T_m + \beta_m q_{m+1} e_m^T$$

$$Q_m = [q_1, q_2, \dots, q_m]$$

$$I_m = \begin{bmatrix} \alpha_1 & \beta_1 & 0 & \cdots & \cdots \\ \beta_1 & \alpha_2 & \beta_2 & 0 & \cdots \\ 0 & \beta_2 & \alpha_3 & \beta_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{bmatrix}$$

T

with q_1, q_2, \ldots, q_m form a (orthonormal) complete set of a *m* dimensional subspace.

Basic Lanczos algorithm

Then the Ritz pairs $(\hat{\lambda}_i, \hat{x}_i)$ can be abtained from

$$\hat{T}_m = U_m^{\dagger} T_m U_m, \qquad X_m = Q_m U_m$$

where \hat{T}_m is diagonal with eigenvalues $\hat{\lambda}_i$, U_m is unitary, and X_m has columns \hat{x}_i . When $m \to \infty$, $(\hat{\lambda}_i, \hat{x}_i) \to (\lambda_i, x_i)$

However, the basic Lanczos algorithm suffers the following problems:

- 1. Some Ritz values may repeatedly appear when m goes larger.
 - q_i loses orthogonality rapidly in the finite precision arithmatics.
 - Re-orthogonal q_i during the iteration.
- 2. It requires a lot of columns q_i in order to project several Ritz pairs.
 - Restart the Lanczos process in a fixed m dimensional subspace.

Thick-Restart Lanczos algorithm

Suppose that we try to project k' eigenpairs of A within the m dimensional Krylov subspace:

$$AQ_m = Q_m T_m + \beta_m q_{m+1} e_m^T \tag{13}$$

Then we *truncate* the dimensiion of the subspace to k and restart the Lanczos iteration (k, k' < m):

The schematic diagram for the Thick-Restart Lanczos process. The non-zero values of the T matrix are illustrated as black lines.

Thick-Restart Lanczos algorithm

- 1. Given a starting vector r_0 , perform the Lanczos process to construct Eq.(13). The Gram-Schmidt procedure is performed to ensure the orthogonalization of q_i .
- 2. Diagonalize T_m : $T_m = U_m^{\dagger} \hat{T}_m U_m$.
- 3. Pick the first *k* columns of *U*, and let $\hat{Q}_k = Q_m U_k$:

$$A\hat{Q}_k = \hat{Q}_k\hat{T}_k + \beta_m\hat{q}_{k+1}s^{\dagger}, \quad \hat{q}_{k+1} = q_{m+1}, \quad s = U_m^{\dagger}e_m$$

i.e., truncate the dimension of subspace from m to k.

4. Restart the Lanczos process, with the next basis constructed by:

$$\hat{\beta}_{k+1}\hat{q}_{k+2} = \hat{r}_{k+1} = (I - \hat{Q}_{k+1}\hat{Q}_{k+1}^{\dagger})A\hat{q}_{k+1}$$
(14)

Then extend the Krylov subspace from dimension k + 1 to m via the Lanczos process.

Adaptive Thick-Restart Lanczos algorithm

The performance of *TRLan* depends on the setting of k for a given eigen-problem and the dimension m of the Krylov subpace. It is instructive to search for the optimal value of k such that the following object function f(k) is maximized, in order to attain the maximum performance: [Yamazaki, Bai, Simon, Wang, Wu, *Tech. Rep. LBNL-1059E (08)*]

$$f(k) = \frac{\text{The reduction factor } d_j \text{ of the residule of } j\text{th Ritz pair}}{\# \text{ of FPO}}$$
(15)

Suppose that for the *j*-th (non-converged) Ritz pair, its residules at (l-1)-th and *l*-th restarts are related by the reduction factor d_j :

$$\beta_j^{(l)} = \beta_j^{(l-1)}/d_j, \qquad d_j \simeq \mathcal{C}_{m-k}(1+2\gamma_e), \qquad \gamma_e = \frac{\hat{\lambda}_{k+1}^{(l)} - \hat{\lambda}_j^{(l)}}{\hat{\lambda}_m^{(l)} - \hat{\lambda}_{k+1}^{(l)}} \quad (16)$$

where $C_n(z)$ is the Chebyshev polynomial of degree *n*.

Adaptive Thick-Restart Lanczos algorithm

For the **# of FPO** in each restart, we only count the dominated parts:

- Reorthogonalization: $q_j \leftarrow (I Q_{j-1}Q_{j-1}^H)q_j$, $j = k + 1, \dots, m$.
- Update of Ritz vectors: $\hat{Q}_k = Q_m U_k$.

Salient features of Adaptive TRLan algorithm:

- The dimension of the subspace *m* is kept finite.
- The reorthogonalization of subspace Q_k is imposed in order to prevent obtaining specious Ritz values.
- The info. of the wanted eigenmodes (within dimension k) in the previous loop is fully used to improve the Ritz pairs after restart.
- The dimension of the truncated subspace *k* is dynamically adjusted for each restart, in order to attain the max. performance.
- It is numerically more reliable, and easier to implement, comparing to the other Restart schemes.

Benchmark

For one of the gauge confs. simulated at $16^3 \times 32 \times 16$, $\beta = 5.9$, $m_q a = 0.01$, which possess top. charge $Q_t = 3$, we perform the benchmark on low-mode projections for H_w and S_+ , respectively. (Intel Xeon E5530 @ 2.4GHz, 8 cores, 24GB memory)

•
$$H_w$$
: $k' = 240$, $m = 340$

method	# of restarts	# of Av	time(s)	speed up
ARPACK	388	35390	136460	1.00
TRLan	999	100140	572951	0.24
ν -TRLan	383	59145	78058	1.75

•
$$S_+: k' = 100, m = 200, n_p = 240$$

method	# of restarts	# of Av	time(s)	speed up
ARPACK	13	1050	112632	1.00
TRLan	12	1300	105790	1.06
ν -TRLan	11	1030	90496	1.24

k': # of required eigenmodes; m: dim. of subspace; n_p : # of eigenmodes of H_w for preconditioning

Benchmark

Adaptive Thick-Restart Lanczos: The change of k with respect to the number of converged eigenmodes (n_{conv}), for the projection of H_w and S_+ , respectively.

Topological susceptibility

(preliminary)

- Fitting our data of χ_t to Eq.(3), we get $a^3\Sigma = 0.0031(4)$.
- Using $a^{-1} = 1590(20)$ MeV, $Z_m = 0.85(1)(2)$, we transcribe Σ to:

 $\Sigma^{\overline{\text{MS}}}(2 \text{ GeV}) = [247(11)(12) \text{ MeV}]^3$

(17)

Concluding Remarks

- We determine Q_t and χ_t from gauge confs. of 2 flavors lattice QCD simulation with ODWF, on the lattice $16^3 \times 32 \times 16$ with Wilson gauge action at $\beta = 5.90$.
- We use Adaptive Thick-Restart Lanczos algorithm to do the low-mode projection on H_w and S_± operators, which can attain 1.7 - 2.0 (for H_w) and 1.2 - 1.4 (for S_±) times faster than ARPACK.
- Our preliminary result of χ_t agrees with the sea-quark mass dependence predicted by the chiral perturbation theory, from which we can extract the chiral condensate.
- Our statistics is still too small to determine c_4 unambigously.
- We plan to port the ν -TRLan code to the GPU.