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Introduction

In QCD, the topological susceptibility (x;) is the most important quantity
to measure the topological charge fluctuation of the QCD vacuum,
which plays an important role in breaking the U (1) symmetry.
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(22: chiral condensate; Q:: top. charge; p: top. charge density; €2: lattice volume)

In ChPT, x; for Ny = 2 at the tree level [Leutwyler & Smilga (92)] and NLO
[Mao & Chiu, PRD ('09)] are:

Xt/My = E(1+mu/md)_1 (3)
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® x; Is suppressed due to internal quark loops in the chiral limit
® It provides a viable way to extract ¥ from y; in the chial limit.
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Introduction (cont.)

The second normalized cumulant (c4) is defined as
1 2
e =g [(@) 3@} ©

®* The leading anomalous contribution to the " — n’ scattering
amplitude in QCD.

®* The dependence of the vacuum energy on the vacuum angle 6.

In ChPT, ¢4 for Ny = 2 at the tree level is
[Mao & Chiu, PRD ('09); Aoki & Fukaya, arXiv:0906.4852 |:

ca = =B(my° +mg?)(myt +mg 7)™ (6)

If one can determine (); for each gauge configuration, then one can
obtain y; and ¢, from Eq.(1) and Eq.(5), respectively.
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Introduction (cont.)

In this work:

* We determine @); and y; from gauge confs. of 2 flavors
lattice QCD simulation with ODWF-.

[ Chiu, PRL (03); hep-lat/0303008 |

* Lattice size: 16> x 32 x 16, with Wilson gauge action at
B = 5.90.

* Sea quark masses: m,a = 0.01, 0.02, 0.03, 0.04, 0.05, and
0.08.

* We determine (); via the low-mode projection of the lattice
Dirac operator, using the Thick-Restart Lanczos algorithm.
[Wu & Simon, SIAM J. Matrix Anal. Appl. (00) |
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Introduction (cont.)

Instead of doing the projection on the 5-D ODWF Dirac operator, we
perform the low-mode projection on its effective 4-D operator D (i.e.,
the overlap Dirac operator with Zolotarev optimal approximation):

Ngs—00

D =mo(1+ V), V =vsHyRz(Hy) *— vssign(Hy) (7)
Then one can solve the eigen-problem of D:
D|6) = X(0)]6), A(0) = mo(1 + €) 8)

Noting that since [DDT,~s] = 0, one can decompose the eigen
problem of DDT into + and — chiralities. Then one can derive:

S+|0), = PrHRz(Hy)P.|0), = £cos6|d), 9)

where |0) = P, |0) + P_|0) = |#)  +|0) . Thus, one can perform the
eigenmode projection on the operator S instead of Eq.(8). Moreover,
\9>i are related to each other:

|(9> _ ! (V — e_w)!@+ for 0 #£ 0, &7, +2m, . .. (10)
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Strategy of projection:

D|6) = A(6)|6), A(6) = mo(1 + €)

® Project the smallest eigenmodes of S |0), = cos6|), . If D has
zero modes in positive chirality, the smallest eigenvalues will have

values ~ —1.

® If D has zero modes in positive chirality, use Eq.(10) to compute
the whole eigenvectors of D.

® |f D does not have zero modes in positive chirality, then they may
appear in negative chirality:

° Project the largest eigenmodes of S_|0) = —cos6|6) . If
there are zero modes in negative chirality, the largest
eigenvalues will have values ~ +1.

° Form the whole eigenvectors of D from |0), and |0) .
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Low-mode projection

To project the low-lying eigenmodes of a large sparse matrix:
Ax = )\ (11)

one construct an orthonormal basis from the Krylov subspace, starting
from the initial vector rq:

IC(A, ?“0) = <T0, Arg, Az’l“o, . ,Am_1T0> (12)

This basis, the linear combination of {A‘rg,i = 0,1,...m — 1}, are the
Ritz vectors (the approximated eigenvectors) of A.

The Lanczos algorithm is the standard procedure to perform
orthonormalization on the subspace K (A, ry), dedicated for AT = A.
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Basic Lanczos algorithm

Basic Lanczos iteration: In this iteration, we are constructing:
Input: 70, Bo = ||70l|, g0 =0 A0.. —O.. T T

P 0 0 0 40 Qm Qm m + 5QO—|—16m
For:2=1,2,...

® ¢ =ri_1/Bi—1 Qm = q1,42; - - -, qm]

@ P = AQ@' 1 51 0

® o; =¢f'p 1 az P2 0

T,, =
2 = = s = Fr—1Gh—1 0 B2 a3z B3
* Bi= Il | DU
with ¢1, ¢2, ..., q,, form a (orthonor-

mal) complete set of a m dimensional
subspace.
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Basic Lanczos algorithm

Then the Ritz pairs (\;, Z;) can be abtained from
Tm — quq,TmUma K, = QmUm

where T, is diagonal with eigenvalues 5\1-, U,, 1S unitary, and X,,, has
columns #;. When m — oo, (A, #;) — (i, ;)

However, the basic Lanczos algorithm suffers the following problems:

1. Some Ritz values may repeatedly appear when m goes larger.
® ¢, loses orthogonality rapidly in the finite precision arithmatics.
® Re-orthogonal ¢; during the iteration.

2. It requires a lot of columns ¢; in order to project several Ritz pairs.

® Restart the Lanczos process in a fixed m dimensional
subspace.
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Thick-Restart Lanczos algorithm

Suppose that we try to project k&’ eigenpairs of A within the m
dimensional Krylov subspace:

AQm — Qme + ﬁQO#—le% (13)

Then we truncate the dimenstion of the subspace to £ and restart the
Lanczos iteration (k, k' < m):

Lanczos | .

The 1st loop
After restart N S
L diagonalize truncate
anczos
- r

The schematic diagram for the Thick-Restart Lanczos process.
The non-zero values of the T matrix_are_ illustrated._as black lines
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Thick-Restart Lanczos algorithm

1.

Given a starting vector rq, perform the Lanczos process to
construct Eq.(13). The Gram-Schmidt procedure is performed to
ensure the orthogonalization of ¢;.

Diagonalize T,,,: T, = Ul T1,Upn.
Pick the first & columns of U, and let Q) = Q,,,Ux:

A@k — Qka + ﬁm@kﬂsT, C_?k+1 = dm+1, S = anem
l.e., truncate the dimension of subspace from m to .

Restart the Lanczos process, with the next basis constructed by:

Br+1dk+2 = Try1 = (I — Qk+1©£+1)A(jk+l (14)

Then extend the Krylov subspace from dimension k£ + 1 to m via
the Lanczos process.
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Adaptive Thick-Restart Lanczos algorithm

The performance of TRLan depends on the setting of k for a given
eigen-problem and the dimension m of the Krylov subpace. It is
Instructive to search for the optimal value of k£ such that the following
object function f(k) is maximized, in order to attain the maximum
performance: [ Yamazaki, Bai, Simon, Wang, Wu, Tech. Rep. LBNL-1059E (08) |

_ The reduction factor d; of the residule of jth Ritz pair

f (k) # of FPO

(15)

Suppose that for the j-th (non-converged) Ritz pair, its residules at
(I — 1)-th and [-th restarts are related by the reduction factor d;:

() _ gU-1) Ao = 4
_ pli= ~ _ J
ﬁj — 63 /d37 d] - Cm—k(]- —|_ 2’)/6)7 Ye = S\(Z) B S\(Z)

e k+1
where C,(z) is the Chebyshev polynomial of degree n.

(16)
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Adaptive Thick-Restart Lanczos algorithm

For the # of FPO in each restart, we only count the dominated parts:
° Reorthogonalization: ¢; «— (I — Q;_1Q7 1)g;, j=k+1,..., m.

* Update of Ritz vectors: Qi = Q,,Us.

Salient features of Adaptive TRLan algorithm:
®* The dimension of the subspace m Is kept finite.

®* The reorthogonalization of subspace (@);. IS Imposed in order to
prevent obtaining specious Ritz values.

® The info. of the wanted eigenmodes (within dimension k) in the
previous loop is fully used to improve the Ritz pairs after restart.

® The dimension of the truncated subspace k is dynamically
adjusted for each restart, in order to attain the max. performance.

® |t is numerically more reliable, and easier to implement,
comparing to the other Restart schemes.
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Benchmark

For one of the gauge confs. simulated at 16° x 32 x 16, 3 = 5.9,

mqa = 0.01, which possess top. charge @); = 3, we perform the
benchmark on low-mode projections for H,, and S, respectively.

(Intel Xeon E5530 @ 2.4GHz, 8 cores, 24GB memory)

* H,: k' =240, m = 340

method #ofrestarts #of Av time(s) speedup
ARPACK 388 35390 136460 1.00
TRLan 999 100140 572951 0.24
v-TRLan 383 59145 78058 1.75
® Si: k' =100, m = 200, n, = 240

method #ofrestarts #of Av time(s) speedup
ARPACK 13 1050 112632 1.00
TRLan 12 1300 105790 1.06
v-TRLan 11 1030 90496 1.24

k’: # of required eigenmodes; m: dim. of subspace; n,: # of eigenmodes of H,, for preconditioning
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Benchmark

v-TRLan: k v.S. nconyv for Hy, projection

300

250

200

150 -

100

!
50 | T Jrk
L +n_conv

0 I I

+
prd

ﬂ# 1 1 1 1

0 200 250 300 350

# of restarts

1
0 50 10 150

400

160

140 -

120 -

100

80

60 -

40

20 -

v-TRLan: k V.S. ncony for S4 projection
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Adaptive Thick-Restart Lanczos: The change of k with respect to the
number of converged eigenmodes (n.onv), for the projection of H,, and

S, respectively.
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Topological susceptibility
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(preliminary)
* Fitting our data of y; to Eq.(3), we get a°% = 0.0031(4).

® Using a=! = 1590(20) MeV, Z,, = 0.85(1)(2), we transcribe X to:

M8 (9 GeV) = [247(11)(12) MeV]3 (17)
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Concluding Remarks

We determine @); and y; from gauge confs. of 2 flavors lattice
QCD simulation with ODWF, on the lattice 16> x 32 x 16 with
Wilson gauge action at 3 = 5.90.

We use Adaptive Thick-Restart Lanczos algorithm to do the
low-mode projection on H,, and S operators, which can attain
1.7-2.0 (for H,) and 1.2-1.4 (for S4) times faster than ARPACK.

Our preliminary result of y; agrees with the sea-quark mass
dependence predicted by the chiral perturbation theory, from
which we can extract the chiral condensate.

Our statistics is still too small to determine ¢, unambigously.

We plan to port the v-TRLan code to the GPU.
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