Topological charge in 2 flavors QCD with optimal domain-wall fermion

Tung-Han Hsieh ${ }^{1}$, Ting-Wai Chiu ${ }^{2}$, Yao-Yuan Mao ${ }^{2}$, Kenji Ogawa ${ }^{2}$ (for TWQCD Collaboration)

${ }^{1}$ Research Center for Applied Sciences, Academia Sinica
${ }^{2}$ Department of physics, National Taiwan University

Introduction

In QCD, the topological susceptibility $\left(\chi_{t}\right)$ is the most important quantity to measure the topological charge fluctuation of the QCD vacuum, which plays an important role in breaking the $U_{A}(1)$ symmetry.

$$
\begin{gather*}
\chi_{t}=\int d^{4} x\{\rho(x) \rho(0)\}=\frac{\left\langle Q_{t}^{2}\right\rangle}{\Omega} \tag{1}\\
\rho(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \lambda \sigma} \operatorname{tr}\left[F_{\mu \nu}(x) F_{\lambda \sigma}(x)\right], \quad Q_{t}=\int d^{4} x \rho(x) \tag{2}
\end{gather*}
$$

(Σ : chiral condensate; Q_{t} : top. charge; ρ : top. charge density; Ω : lattice volume) In ChPT, χ_{t} for $N_{f}=2$ at the tree level [Leutwyler \& Smilga ('92)] and NLO [Mao \& Chiu, PRD ('09)] are:

$$
\begin{align*}
\chi_{t} / m_{u} & =\Sigma\left(1+m_{u} / m_{d}\right)^{-1} \tag{3}\\
\chi_{t} / m_{u} & =\frac{\Sigma}{2}\left[1+3\left(\frac{M_{\pi}^{2}}{32 \pi^{2} F_{\pi}^{2}}\right) \ln \frac{M_{\pi}^{2}}{\mu_{s u b}^{2}}-\left(2 K_{6}+2 K_{7}+K_{8}\right) m_{q}\right]
\end{align*}
$$

- χ_{t} is suppressed due to internal quark loops in the chiral limit
- It provides a viable way to extract Σ from χ_{t} in the chial limit.

Introduction (cont.)

The second normalized cumulant $\left(c_{4}\right)$ is defined as

$$
\begin{equation*}
c_{4}=-\frac{1}{\Omega}\left[\left\langle Q_{t}^{4}\right\rangle-3\left\langle Q_{t}^{2}\right\rangle^{2}\right] \tag{5}
\end{equation*}
$$

- The leading anomalous contribution to the $\eta^{\prime}-\eta^{\prime}$ scattering amplitude in QCD.
- The dependence of the vacuum energy on the vacuum angle θ.

In ChPT, c_{4} for $N_{f}=2$ at the tree level is
[Mao \& Chiu, PRD ('09); Aoki \& Fukaya, arXiv:0906.4852]:

$$
\begin{equation*}
c_{4}=-\Sigma\left(m_{u}^{-3}+m_{d}^{-3}\right)\left(m_{u}^{-1}+m_{d}^{-1}\right)^{-1} \tag{6}
\end{equation*}
$$

If one can determine Q_{t} for each gauge configuration, then one can obtain χ_{t} and c_{4} from Eq.(1) and Eq.(5), respectively.

Introduction (cont.)

In this work:

- We determine Q_{t} and χ_{t} from gauge confs. of 2 flavors lattice QCD simulation with ODWF.
[Chiu, PRL (03); hep-lat/0303008]
- Lattice size: $16^{3} \times 32 \times 16$, with Wilson gauge action at $\beta=5.90$.
- Sea quark masses: $m_{q} a=0.01,0.02,0.03,0.04,0.05$, and 0.08 .
- We determine Q_{t} via the low-mode projection of the lattice Dirac operator, using the Thick-Restart Lanczos algorithm.
[Wu \& Simon, SIAM J. Matrix Anal. Appl. (00)]

Introduction (cont.)

Instead of doing the projection on the 5-D ODWF Dirac operator, we perform the low-mode projection on its effective 4-D operator D (i.e., the overlap Dirac operator with Zolotarev optimal approximation):

$$
\begin{equation*}
D=m_{0}(1+V), \quad V \equiv \gamma_{5} H_{w} R_{Z}\left(H_{w}\right) \xrightarrow{N_{s} \rightarrow \infty} \gamma_{5} \operatorname{sign}\left(H_{w}\right) \tag{7}
\end{equation*}
$$

Then one can solve the eigen-problem of D :

$$
\begin{equation*}
D|\theta\rangle=\lambda(\theta)|\theta\rangle, \quad \lambda(\theta)=m_{0}\left(1+e^{i \theta}\right) \tag{8}
\end{equation*}
$$

Noting that since $\left[D D^{\dagger}, \gamma_{5}\right]=0$, one can decompose the eigen problem of $D D^{\dagger}$ into + and - chiralities. Then one can derive:

$$
\begin{equation*}
S_{ \pm}|\theta\rangle_{ \pm} \equiv P_{ \pm} H_{w} R_{Z}\left(H_{w}\right) P_{ \pm}|\theta\rangle_{ \pm}= \pm \cos \theta|\theta\rangle_{ \pm} \tag{9}
\end{equation*}
$$

where $|\theta\rangle=P_{+}|\theta\rangle+P_{-}|\theta\rangle=|\theta\rangle_{+}+|\theta\rangle_{-}$. Thus, one can perform the eigenmode projection on the operator $S_{ \pm}$instead of Eq.(8). Moreover, $|\theta\rangle_{ \pm}$are related to each other:

$$
\begin{equation*}
|\theta\rangle=\frac{1}{i \sin \theta}\left(V-e^{-i \theta}\right)|\theta\rangle_{+} \quad \text { for } \theta \neq 0, \pm \pi, \pm 2 \pi, \ldots \tag{10}
\end{equation*}
$$

Strategy of projection:

$$
D|\theta\rangle=\lambda(\theta)|\theta\rangle, \quad \lambda(\theta)=m_{0}\left(1+e^{i \theta}\right)
$$

- Project the smallest eigenmodes of $S_{+}|\theta\rangle_{+}=\cos \theta|\theta\rangle_{+}$. If D has zero modes in positive chirality, the smallest eigenvalues will have values $\simeq-1$.
- If D has zero modes in positive chirality, use Eq.(10) to compute the whole eigenvectors of D.
- If D does not have zero modes in positive chirality, then they may appear in negative chirality:
- Project the largest eigenmodes of $S_{-}|\theta\rangle_{-}=-\cos \theta|\theta\rangle_{-}$. If there are zero modes in negative chirality, the largest eigenvalues will have values $\simeq+1$.
- Form the whole eigenvectors of D from $|\theta\rangle_{+}$and $|\theta\rangle_{-}$.

Low-mode projection

To project the low-lying eigenmodes of a large sparse matrix:

$$
\begin{equation*}
A x=x \lambda \tag{11}
\end{equation*}
$$

one construct an orthonormal basis from the Krylov subspace, starting from the initial vector r_{0} :

$$
\begin{equation*}
\mathcal{K}\left(A, r_{0}\right)=\left\langle r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{m-1} r_{0}\right\rangle \tag{12}
\end{equation*}
$$

This basis, the linear combination of $\left\{A^{i} r_{0}, i=0,1, \ldots m-1\right\}$, are the Ritz vectors (the approximated eigenvectors) of A.

The Lanczos algorithm is the standard procedure to perform orthonormalization on the subspace $\mathcal{K}\left(A, r_{0}\right)$, dedicated for $A^{\dagger}=A$.

Basic Lanczos algorithm

Basic Lanczos iteration:
Input: $r_{0}, \beta_{0}=\left\|r_{0}\right\|, q_{0}=0$
For: $i=1,2, \ldots$

- $q_{i}=r_{i-1} / \beta_{i-1}$
- $p=A q_{i}$
- $\alpha_{i}=q_{i}^{H} p$
- $r_{i}=p-\alpha_{i} q_{i}-\beta_{i-1} q_{i-1}$
- $\beta_{i}=\left\|r_{i}\right\|$

In this iteration, we are constructing:

$$
\begin{gathered}
A Q_{m}=Q_{m} T_{m}+\beta_{m} q_{m+1} e_{m}^{T} \\
Q_{m}=\left[q_{1}, q_{2}, \ldots, q_{m}\right] \\
T_{m}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & 0 & \ldots & \ldots \\
\beta_{1} & \alpha_{2} & \beta_{2} & 0 & \ldots \\
0 & \beta_{2} & \alpha_{3} & \beta_{3} & \ldots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
\end{gathered}
$$

with $q_{1}, q_{2}, \ldots, q_{m}$ form a (orthonormal) complete set of a m dimensional subspace.

Basic Lanczos algorithm

Then the Ritz pairs $\left(\hat{\lambda}_{i}, \hat{x}_{i}\right)$ can be abtained from

$$
\hat{T}_{m}=U_{m}^{\dagger} T_{m} U_{m}, \quad X_{m}=Q_{m} U_{m}
$$

where \hat{T}_{m} is diagonal with eigenvalues $\hat{\lambda}_{i}, U_{m}$ is unitary, and X_{m} has columns \hat{x}_{i}. When $m \rightarrow \infty,\left(\hat{\lambda}_{i}, \hat{x}_{i}\right) \rightarrow\left(\lambda_{i}, x_{i}\right)$

However, the basic Lanczos algorithm suffers the following problems:

1. Some Ritz values may repeatedly appear when m goes larger.

- q_{i} loses orthogonality rapidly in the finite precision arithmatics.
- Re-orthogonal q_{i} during the iteration.

2. It requires a lot of columns q_{i} in order to project several Ritz pairs.

- Restart the Lanczos process in a fixed m dimensional subspace.

Thick-Restart Lanczos algorithm

Suppose that we try to project k^{\prime} eigenpairs of A within the m dimensional Krylov subspace:

$$
\begin{equation*}
A Q_{m}=Q_{m} T_{m}+\beta_{m} q_{m+1} e_{m}^{T} \tag{13}
\end{equation*}
$$

Then we truncate the dimenstion of the subspace to k and restart the Lanczos iteration $\left(k, k^{\prime}<m\right)$:

The schematic diagram for the Thick-Restart Lanczos process. The non-zero values of the T matrix are illustrated as black lines.

Thick-Restart Lanczos algorithm

1. Given a starting vector r_{0}, perform the Lanczos process to construct Eq.(13). The Gram-Schmidt procedure is performed to ensure the orthogonalization of q_{i}.
2. Diagonalize $T_{m}: T_{m}=U_{m}^{\dagger} \hat{T}_{m} U_{m}$.
3. Pick the first k columns of U, and let $\hat{Q}_{k}=Q_{m} U_{k}$:

$$
A \hat{Q}_{k}=\hat{Q}_{k} \hat{T}_{k}+\beta_{m} \hat{q}_{k+1} s^{\dagger}, \quad \hat{q}_{k+1}=q_{m+1}, \quad s=U_{m}^{\dagger} e_{m}
$$

i.e., truncate the dimension of subspace from m to k.
4. Restart the Lanczos process, with the next basis constructed by:

$$
\begin{equation*}
\hat{\beta}_{k+1} \hat{q}_{k+2}=\hat{r}_{k+1}=\left(I-\hat{Q}_{k+1} \hat{Q}_{k+1}^{\dagger}\right) A \hat{q}_{k+1} \tag{14}
\end{equation*}
$$

Then extend the Krylov subspace from dimension $k+1$ to m via the Lanczos process.

Adaptive Thick-Restart Lanczos algorithm

The performance of TRLan depends on the setting of k for a given eigen-problem and the dimension m of the Krylov subpace. It is instructive to search for the optimal value of k such that the following object function $f(k)$ is maximized, in order to attain the maximum performance: [Yamazaki, Bai, Simon, Wang, Wu, Tech. Rep. LBNL-1059E (08)]

$$
\begin{equation*}
f(k)=\frac{\text { The reduction factor } d_{j} \text { of the residule of } j \text { th Ritz pair }}{\# \text { of FPO }} \tag{15}
\end{equation*}
$$

Suppose that for the j-th (non-converged) Ritz pair, its residules at ($l-1$)-th and l-th restarts are related by the reduction factor d_{j} :

$$
\begin{equation*}
\beta_{j}^{(l)}=\beta_{j}^{(l-1)} / d_{j}, \quad d_{j} \simeq \mathcal{C}_{m-k}\left(1+2 \gamma_{e}\right), \quad \gamma_{e}=\frac{\hat{\lambda}_{k+1}^{(l)}-\hat{\lambda}_{j}^{(l)}}{\hat{\lambda}_{m}^{(l)}-\hat{\lambda}_{k+1}^{(l)}} \tag{16}
\end{equation*}
$$

where $\mathcal{C}_{n}(z)$ is the Chebyshev polynomial of degree n.

Adaptive Thick-Restart Lanczos algorithm

For the \# of FPO in each restart, we only count the dominated parts:

- Reorthogonalization: $q_{j} \leftarrow\left(I-Q_{j-1} Q_{j-1}^{H}\right) q_{j}, j=k+1, \ldots, m$.
- Update of Ritz vectors: $\hat{Q}_{k}=Q_{m} U_{k}$.

Salient features of Adaptive TRLan algorithm:

- The dimension of the subspace m is kept finite.
- The reorthogonalization of subspace Q_{k} is imposed in order to prevent obtaining specious Ritz values.
- The info. of the wanted eigenmodes (within dimension k) in the previous loop is fully used to improve the Ritz pairs after restart.
- The dimension of the truncated subspace k is dynamically adjusted for each restart, in order to attain the max. performance.
- It is numerically more reliable, and easier to implement, comparing to the other Restart schemes.

Benchmark

For one of the gauge confs. simulated at $16^{3} \times 32 \times 16, \beta=5.9$, $m_{q} a=0.01$, which possess top. charge $Q_{t}=3$, we perform the benchmark on low-mode projections for H_{w} and S_{+}, respectively. (Intel Xeon E5530 @ 2.4GHz, 8 cores, 24GB memory)

- $H_{w}: k^{\prime}=240, m=340$

method	\# of restarts	\# of Av	time(s)	speed up
ARPACK	388	35390	136460	1.00
TRLan	999	100140	572951	0.24
ν-TRLan	383	59145	78058	1.75

- $S_{+}: k^{\prime}=100, m=200, n_{p}=240$

method	\# of restarts	\# of Av	time(s)	speed up
ARPACK	13	1050	112632	1.00
TRLan	12	1300	105790	1.06
ν-TRLan	11	1030	90496	1.24

$k^{\prime}:$ \# of required eigenmodes; m : dim. of subspace; n_{p} : \# of eigenmodes of H_{w} for preconditioning

Benchmark

ν-TRLan: k v.s. $n_{\text {conv }}$ for S_{+}projection

Adaptive Thick-Restart Lanczos: The change of k with respect to the number of converged eigenmodes ($n_{\text {conv }}$), for the projection of H_{w} and S_{+}, respectively.

Topological susceptibility

(preliminary)

- Fitting our data of χ_{t} to Eq.(3), we get $a^{3} \Sigma=0.0031$ (4).
- Using $a^{-1}=1590(20) \mathrm{MeV}, Z_{m}=0.85(1)(2)$, we transcribe Σ to:

$$
\Sigma^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=[247(11)(12) \mathrm{MeV}]^{3}
$$

Concluding Remarks

- We determine Q_{t} and χ_{t} from gauge confs. of 2 flavors lattice QCD simulation with ODWF, on the lattice $16^{3} \times 32 \times 16$ with Wilson gauge action at $\beta=5.90$.
- We use Adaptive Thick-Restart Lanczos algorithm to do the low-mode projection on H_{w} and $S_{ \pm}$operators, which can attain 1.7-2.0 (for H_{w}) and 1.2-1.4 (for $S_{ \pm}$) times faster than ARPACK.
- Our preliminary result of χ_{t} agrees with the sea-quark mass dependence predicted by the chiral perturbation theory, from which we can extract the chiral condensate.
- Our statistics is still too small to determine c_{4} unambigously.
- We plan to port the ν-TRLan code to the GPU.

