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Introduction

I ”Nucleon strangeness”: the matrix element
〈N |s̄s|N〉 − 〈0|s̄s|0〉

I Important for understanding interactions between some dark
matter candidates and nuclear matter (e.g. in detectors)

I Also important for understanding nucleon and QCD-sea
structure

I Calculated in 2009 using MILC data (see arXiv:0905.2432,
Phys. Rev. Lett. 103.122002)

I Errors in the 10% range were improvement on previous
results, but can they be improved further?

W. Freeman and D. Toussaint (UA) Improved nucleon strangeness June 15, 2010 2 / 17



Meaning of ”nuclear strangeness”

I Does not imply that
there are a great
many virtual s̄s
pairs in the nucleon

I Nucleon
strangeness is
actually the
suppression of the
vacuum strange
quark condensate

I Nucleon like an air
bubble in glass
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Previous calculation: method

I Differentiate the partition function to get
〈N|s̄s|N〉 − 〈0|s̄s|0〉 = ∂MN

∂ms
(Feynman-Hellman theorem)

I Does not mean that physical MN depends greatly on ms

I Changing ms changes all dimensionful lattice quantities;
we interpret this as an overall rescaling of a

I MN just a complicated function of propagator P(t) over chosen
range of t (since MN is gotten by a fit to P(t))

I Chain rule: ∂MN
∂ms

=
∑

t
∂MN
∂P(t)

∂P(t)
∂ms

I Get the first of these from changing P(t) and seeing how
MN changes

I Get the second from ∂P(t)
∂ms

= 〈P(t)s̄s〉 − 〈P(t)〉 〈s̄s〉
I Key idea: look for correlations between strange condensate

and propagator
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Previous calculation: data

I Use the large preexisting library of MILC Asqtad lattices
with dynamical u, d and s quarks

I Range of dynamical quark masses: 0.1ms < mlight < 1.2ms

I Range of lattice spacings: a = 0.12, 0.09, 0.06 fm used here

I High statistics (cheap staggered quarks)

I Nucleon propagators already computed on most of them

I Several stochastic estimations of s̄s on each lattice
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Results for ∂MN
∂ms

I ∂MN

∂ms
(MS(2GeV ))

after extrapolation
to physical ms , with
chiral fit shown

I Best statistics from
coarsest
(a = 0.12fm)
ensembles

I Weak dependence

on ml
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Result and error budget
∂MN
∂ms

= 0.69 ± 0.07stat ± 0.09systematic

Error source Estimate
statistical 0.070
Excited states 0.069 (10%)
Finite volume 0.021 (3%)
Higher order χPT 0.049 (7%)
Error in Zm 0.028 (4%)
Combined systematic 0.09

I Excited states: estimated (conservatively) from alternate choices of
dmin

I Finite volume: 1% difference in precision nucleon mass measurements;
we take 3% as a worst-case value

I Higher order dependence on ml : 7% effect in nucleon mass fitting
from adding extra terms past constant-plus-linear

I Error in Zm: from Mason et al., hep-ph/0511160
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How can we do better?

I Large source of statistical error: fluctuations of s̄s that are
not correlated with the nucleon propagator/mass

I Each propagator covers only a small region of the lattice
I Typical a = 0.12fm ensemble: nt = 64
I MN determined by fit to propagators with length from 5-15
I Use entire lattice by averaging many propagators at

different source times

I No physical reason for s̄s to be correlated with P(t) far
from propagation region

I In the limit of high statistics, correlations far from this
region will average to zero...

I ... but for finite N they contribute statistical noise
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Modifying the calculation

I Only consider the condensate at times between source and sink operators of the

propagator, plus some “padding” of a few time units at each end
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Modifying the calculation: issues

I Introduction of bias: how much s̄s can we safely discard?

I Effectiveness: by how much does this improve statistics?

I Additional computer time required
I Only have average of all spectrum sources; need each

source and direction individually
I Only have average of s̄s over whole lattice; need separate

measurement on each timeslice
I So far, have only completed the needed measurements on

four large a = 0.12 ensembles

I Better control of systematics possible
I Better estimate of error from excited states
I Continuum and chiral extrapolations
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Validity test: propagator-q̄q correlations

I Is s̄s far from the propagation region really uncorrelated with
the propagator?

I How far is “far”?

I Success: value of s̄s on timeslices more than 3-4 units from
propagator should not matter
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Effect of varying the padding width
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Amount of required padding

I Expect the systematic
error from using too
low a padding size to
be negative

I As expected, results dip
sharply below pad
width 3 or so

I Conclude that pad
width 4 is acceptable

I Estimate potential
systematic error from
this as 3%

I Significant decrease in
statistical error, by
almost 50%!
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New estimate of excited states error

I Using too large a minimum distance in nucleon fits gives
larger statistical errors

I Using too small a minimum distance gives propagators
polluted by excited states

I Choose minimum distance consistent with results at higher
tmin

I Previous work used tmin = 5a on a = 0.12fm ensembles

I Previous systematic error estimate of 10% possibly too
conservative

I Will better statistics let us reduce it?
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Results vs. minimum distance
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Estimating systematic error from excited
states

I Three of these four ensembles, as well as partial data from a fifth,
show no strong dependence on dmin down to 5a or even 4a

I The smaller statistical errors would allow for a lower upper bound to
be placed on the systematic error from excited states

I The ml = 0.25ms ensemble shows strong dependence, but this seems

more consistent with a statistical fluctuation than a systematic effect

I The error bars above are highly correlated – a trend is not
necessarily indicative of a systematic effect

I A systematic effect should show up in a similar manner in
other ensembles

I This ensemble showed stronger variation with padding size
than others

I Need to use improved procedure on more ensembles, including finer
lattice spacings, to support a reduced systematic error estimate
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Conclusions

I Substantial reduction in statistical errors possible (by
almost half)

I Some systematic errors can also be substantially reduced
I Better statistics may allow reduced estimate of excited

states error once more ensembles are run
I Using new technique on finer ensembles will allow better

control of continuum extrapolation (which had large
uncertainty previously)

F This is relatively more expensive in computer time

I Reduced error bars on ensembles with light quark masses
will allow better chiral extrapolation
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