#### Estimating dilepton rates and electrical conductivity from vector current correlation functions in quenched QCD

Frithjof Karsch, BNL and Bielefeld University

Introduction:

Dilepton rates, Euclidean correlators and spectral functions

Vector correlation function on the lattice

volume and cut-off dependence thermal moments of the spectral function continuum extrapolation

Dilepton rate and electrical conductivity

using an ansatz for the spectral function using MEM



#### Estimating dilepton rates and electrical conductivity from vector current correlation functions in quenched QCD

Frithjof Karsch, BNL and Bielefeld University

in collaboration with:

HengTong Ding, Anthony Francis, Olaf Kaczmarek (Bielefeld) and Wolfgang Söldner (Frankfurt/GSI)

see also poster by A. Francis

The continuum limit of hadronic correlation functions in the deconfined phase of an SU(3) gauge theory

# Thermal vector meson properties from dilepton rates in heavy ion collisions



differential cross-section for  $l^+l^-$  pair production



dilepton pair ( $e^+e^-$ ,  $\mu^+\mu^-$ ) production through annihilation of "thermal"  $\bar{q}q$ -pairs in hot and dense matter

rate  $\sim |q \bar{q} \rightarrow \gamma^*|^2 \cdot |l^+ l^- \rightarrow \gamma^*|^2$ 



## Thermal vector meson properties from dilepton rates in heavy ion collisions

low-mass  $e^+e^-$ -pairs: A. Adare et al. (PHENIX Collaboration), PRL 104, 132301 (2010)





dilepton pair ( $e^+e^-$ ,  $\mu^+\mu^-$ ) production through annihilation of "thermal"  $\bar{q}q$ -pairs in hot and dense matter

rate  $\sim |q \bar{q} 
ightarrow \gamma^*|^2 \cdot |l^+ l^- 
ightarrow \gamma^*|^2$ 



differential cross-section for  $l^+l^-$  pair production  $\Rightarrow$  thermal meson correlation function

# Thermal 'meson' correlation functions and spectral functions

Thermal correlation functions: 2-point functions which describe propagation of a  $\bar{q}q$ -pair



### Vector correlation functions at high temperature

Itime-like (G<sub>00</sub>) and space-like (G<sub>ii</sub>) correlator (at  $\vec{p} = 0$ ) of local, non-conserved current:  $J_{\mu}(\tau, \vec{x}) = 2\kappa Z_V \bar{\psi}(\tau, \vec{x}) \gamma_{\mu} \psi(\tau, \vec{x})$ )

$$egin{array}{rll} G_{\mu
u}( au,ec{x}) &=& \langle J_{\mu}( au,ec{x}) J_{
u}^{\dagger}(0,ec{0}) 
angle \ G_{\mu
u}( au,ec{p}) &=& \sum_{ec{x}} G_{\mu
u}( au,ec{x}) \ {
m e}^{iec{p}\cdotec{x}} \ G_{V}( au,ec{p}) &=& -G_{00}( au,ec{p}) + G_{ii}( au,ec{p}) \end{array}$$

conserved current,  $J_0 \Rightarrow \tau$ -independent correlator  $G_{00}$   $\sim$  quark number susceptibility  $\chi_q$ :  $G_{00}(\tau, \vec{p} = 0)) \equiv \chi_q T + \mathcal{O}(a^2)$ 

ratios are free of renormalization ambiguities, e.g.

 $R( au) \equiv rac{G_V( au)}{G_{00}( au)} ~~;~~ R( au) \equiv rac{G_V( au)}{G_{00}( au) G_V^{free}( au T)}$ 

### Spectral functions at high temperature

free vector spectral function (infinite temperature limit)

$$egin{aligned} &
ho_{00}^{ ext{free}}(\omega) &= & 2\pi T^2 \omega \delta(\omega) \ &
ho_{ii}^{ ext{free}}(\omega) &= & 2\pi T^2 \omega \delta(\omega) + rac{3}{2\pi} \; \omega^2 \; anh(\omega/4T) \end{aligned}$$

•  $\delta$ -functions cancel in  $ho_V(\omega) \equiv ho_{00}(\omega) + 
ho_{ii}(\omega)$ 

**9**  $T < \infty$ :  $\delta$ -function in  $\rho_{00}$  protected;  $\delta$ -function in  $\rho_{ii}$  gets smeared out: **ansatz**:

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$
  

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \ \omega^2 \ \tanh(\omega/4T)$$

3-4 parameter:  $(\chi_q), c_{BW}, \Gamma, \kappa$ 

### **Electrical Conductivity**

lectrical conductivity  $\Leftrightarrow$  slope of spectral function at  $\omega = 0$ 

$$rac{\sigma}{T} = rac{1}{6} \lim_{\omega o 0} rac{
ho_{ii}(\omega)}{\omega T}$$

using our ansatz for  $ho_{ii}(\omega)$ :

$$rac{\sigma}{T} = rac{2}{3} \; rac{\chi_q}{T^2} \; rac{T}{\Gamma} \; c_{BW} \cdot C_{em}$$

with  $C_{em}=e^2\sum_{f=1}^{n_f}Q_f^2$ , i.e.  $rac{5}{9}e^2$  for  $n_f=2$ , or  $rac{6}{9}e^2$  for  $n_f=3$ 

previous studies using staggered fermions

S. Gupta, PL B597 (2004) 57:  $N_{ au} = 8 - 14, N_{\sigma} \le 44$ 

G. Aarts et al., PRL 99 (2007) 022002:  $N_{ au} = 16, \ 24, \ N_{\sigma} = 64$ 

(need to distinguish  $ho_{even}(\omega), 
ho_{odd}(\omega))$ 

#### Light quark correlation functions and spectral functions

FK et al., PLB530 (2002) 147



MEM

analysis

#### Light quark correlation functions and spectral functions FK et al., PLB530 (2002) 147

vector spectral functions vector correlator 0.3  $\sigma_V(\omega,T)/\omega^2$ 10000  $G_V(\tau T) / 2 T^3$  $0.4T_{c}$ 0.4T<sub>c</sub> ↔  $0.6T_{c}$ 0.6T<sub>c</sub> ⊶ 1.5T<sub>c</sub> 3.0T<sub>c</sub> 1.5T ື ⊕ 1000 ਼ ਅ 0.2 T=∞ — 100 0.1 10  $\omega/T_c$  $\tau T$ 0.0 1 5 10 15 20 25 30 0 0.8 0.2 0.4 0.6 0 1  $64^3 \times 16$  lattices, clover fermions

MEM

analysis

#### Light quark correlation functions and spectral functions FK et al., PLB530 (2002) 147

vector spectral functions vector correlator 0.3  $\sigma_V(\omega,T)/\omega^2$ 10000  $G_V(\tau T) / 2 T^3$  $0.4T_{c}$ 0.4T<sub>a</sub> ↔  $0.6T_{c}$  $0.6T_{c} \simeq$  $1.5T_{c}$ .5T<sub>c</sub> ⊕ 3.0T<sub>c</sub> 1000 0.2 100 0.1 10  $\omega/T_c$  $\tau T$ 0.0 1 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 0 1  $64^3 \times 16$  lattices, clover fermions

•  $N_{\sigma}/N_{\tau} = 4$ : finite volume effects?

**9**  $64^3 \times 16$ : cut-off effects?

MEM

analysis

expect  $\rho_V(\omega) \sim \omega$  for  $\omega/T \ll 1$ ; not captured by MEM because default model did not allow for it; redefinition of kernel helps (G. Aarts et al., PRL99 (2007) 022002)

#### New Analysis: Vector correlation function on large & fine lattices

SU(3) gauge configurations at  $T/T_c = 1.5$ 

In attice size  $N_{\sigma}^3 N_{\tau}$  with  $N_{\sigma} = 32 - 128$ ,

$$N_{ au} = 16, \ 24, \ 32, \ 48$$

vector correlation functions at  $\kappa \simeq \kappa_c$  using nonperturbatively improved clover fermions & (non-perturbative renormalization constants)

| $N_{	au}$ | $N_{\sigma}$ | $oldsymbol{eta}$ | $c_{SW}$ | $\kappa$ | $Z_V$ | # conf <sup>†</sup> |
|-----------|--------------|------------------|----------|----------|-------|---------------------|
| 16        | 32           | 6.872            | 1.4125   | 0.13495  | 0.829 | 60                  |
|           | 48           | 6.872            | 1.4125   | 0.13495  | 0.829 | 62                  |
|           | 64           | 6.872            | 1.4125   | 0.13495  | 0.829 | 77                  |
|           | 128          | 6.872            | 1.4125   | 0.13495  | 0.829 | 191                 |
| 24        | 128          | 7.192            | 1.3673   | 0.13440  | 0.842 | 156                 |
| 32        | 128          | 7.457            | 1.3389   | 0.13390  | 0.851 | 255                 |
| 48        | 128          | 7.793            | 1.3104   | 0.13340  | 0.861 | 431                 |

\* separated by 500 updates<sup>2010, Frithjof Karsch – p.9/20</sup>

### Vector correlation function volume & cut-off dependence



cut-off effects more severe than finite volume effects

### Vector correlation function volume & cut-off dependence



cut-off effects more severe than finite volume effects





Lattice 2010, Frithjof Karsch - p.11/20

### Vector correlation function: Continuum extrapolation of $G_{ii}(\tau T)$

extrapolation in 
$$(aT)^2 = 1/N_{\tau}^2$$
:

\_



 $ar{G}_{00}\equiv \chi_q/T^2$ 

$$rac{G_{ii}( au,T)}{ar{G}_{00}G_V^{free}( au,T)}$$

 $egin{aligned} 1.701(11) \;,\; au T = 0.5 \ 1.527(9) \;,\; au T = 0.375 \ 1.288(7) \;,\; au T = 0.25 \end{aligned}$ 

- extrapolation at other values of  $\tau T$  use spline interpolation on data at fixed cut-off
- extrapolation under control for  $au T \gtrsim 0.2$

## Vector correlation function: $\frac{Curvature}{T}$ at au T = 1/2

thermal moments of the spectral function coefficients

$$\begin{aligned} G_V^{(n)} &= \left. \frac{1}{n!} \left. \frac{\mathrm{d}G_V(\tau T)}{\mathrm{d}(\tau T)^n} \right|_{\tau T = 1/2} = \frac{1}{n!} \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \left( \frac{\omega}{T} \right)^n \left. \frac{\rho_V(\omega)}{\sinh(\omega/2T)} \right. , \\ G_V(\tau T) &= \left. G_V^{(0)} \sum_{n=0}^\infty \frac{G_V^{(2n)}}{G_V^{(0)}} \left( \frac{1}{2} - \tau T \right)^{2n} \end{aligned}$$

finite difference approximants

$$\begin{split} \Delta(\tau T) &= \frac{G_V(\tau T) - G_V(1/2)}{(1/2 - \tau T)^2} \\ \frac{G_V^{(2)}}{G_V^{(0)}} &= \lim_{\tau T \to 1/2} \frac{\Delta(\tau T)}{G_V(1/2)} \\ &\quad \text{(correspondingly for $G_{ii}(\tau T)$)}_{\text{Lattice 2010, Frithjof Karsch - p.13/20}} \end{split}$$

## Vector correlation function: ${ m Curvature}$ at au T=1/2



normalized curvature close to that of the free vector correlator

#### Vector correlation function: Fits to curvature approximants at au T = 1/2



#### $G_{ii}( au T)$ correlation function: Fits to curvature approximants at au T=1/2



#### Analysis of continuum correlator

Ansatz for spectral function:

$$egin{aligned} 
ho_{00}(\omega) &=& 2\pi\chi_q\omega\delta(\omega) \ 
ho_{ii}(\omega) &=& 4rac{\chi_qc_{BW}}{\Gamma}rac{\omega}{(2\omega/\Gamma)^2+1}+rac{3}{2\pi}\left(1+\kappa
ight)\,\omega^2\,\tanh(\omega/4T) \end{aligned}$$

 $\Rightarrow$  correlation function:

$$R_{ii}( au T) = rac{G_{ii}( au T)}{G_{ii}^{free}( au T)} = \chi_q c_{BW} F( au T, \Gamma) + (1+\kappa)$$

differences:

$$R_{ii}( au T) - R_{ii}(1/2) = \chi_q c_{BW} \left( F( au T, \Gamma) - F(1/2, \Gamma) \right)$$

ratios:

$$\frac{R_{ii}(\tau_1 T) - R_{ii}(1/2)}{R_{ii}(\tau_2 T) - R_{ii}(1/2)} = \frac{F(\tau_1 T, \Gamma) - F(1/2, \Gamma)}{F(\tau_2 T, \Gamma) - F(1/2, \Gamma)}$$

### Vector correlation function: Continuum extrapolation of $G_{ii}(\tau T)$

extrapolation in 
$$(aT)^2 = 1/N_{ au}^2$$



- extrapolation at other values of  $\tau T$  use spline interpolation on data at fixed cut-off
- extrapolation under control for  $au T \gtrsim 0.2$

 $ar{G}_{00}\equiv\chi_q/T^2$ 

#### Vector spectral function: dilepton rate & electrical conductuvity

fit to correlation function and curvature at the midpoint



shaded area corresponds to  $0.587 \leq c_{BW}T/\Gamma \leq 0.675$ ,  $\Gamma/T = 2.30(36)$ 

 $\Rightarrow$  electrical conductivity:

$$rac{\sigma}{T} = (0.38 \pm 0.03) C_{em}$$

#### Vector spectral function: dilepton rate & electrical conductuvity

fit to correlation function and curvature at the midpoint



shaded area corresponds to  $0.587 \leq c_{BW}T/\Gamma \leq 0.675$ ,  $\Gamma/T = 2.30(36)$ 

 $\Rightarrow$  electrical conductivity:

$$rac{\sigma}{T} = (0.38 \pm 0.03) C_{em}$$

### **Maximum Entropy Method**

- did not make use of MEM so far; may, however, use result of our fit as default model in a MEM analysis
    $\Rightarrow$  consistency check: influence of poorly fitted short distance (large  $\omega/T$ ) part on large distance (small  $\omega/T$ ) analysis
- MEM analysis of  $N_{\tau} = 48$  data set using (i) fitted BW and continuum parameter and (ii) replace continuum by lattice free

spectral function



### **Maximum Entropy Method**

- did not make use of MEM so far; may, however, use result of our fit as default model in a MEM analysis
    $\Rightarrow$  consistency check: influence of poorly fitted short distance (large  $\omega/T$ ) part on large distance (small  $\omega/T$ ) analysis
- MEM analysis of  $N_{\tau} = 48$  data set using (i) fitted BW and continuum parameter and (ii) replace continuum by lattice free

spectral function



Lattice 2010, Frithjof Karsch - p.19/20

#### Conclusions

- We calculated the vector correlation function at  $T/T_c = 1.5$  in quenched QCD and performed a continuum extrapolation.
- $G_V(\tau T)$  is well reproduced using a Breit-Wigner plus continuum ansatz for the vector spectral function
- lectrical conductivity:  $\frac{\sigma}{T} = (0.38 \pm 0.03)C_{em}$  (preliminary)
- dilepton rate: approaches leading order Born rate for  $\omega/T \gtrsim 4$