Lattice Study of Trapped Fermions at Unitarity

Amy N. Nicholson Institute for Nuclear Theory, University of Washington

Lattice 2010

Villasimius, Sardinia
June 18, 2010

In collaboration with:
David B. Kaplan (INNT, UW) Michael G. Endres (Columbia University) Jong-Wan Lee (INNT, UW)

Our Goal

- High-precision studies of large, strongly interacting systems of fermions
\rightarrow Unitary fermions - ideal laboratory
- Universal physics
- Relevant for all systems with $r_{0} \ll n^{-1 / 3} \ll a$
- Nuclear matter
- Cold atom experiments
\rightarrow Harmonic trap
- Up to N=20 fermions, <1\% errors

Our Goal

- High-precision studies of large, strongly interacting systems of fermions
\rightarrow Unitary fermions - ideal laboratory
\rightarrow Harmonic trap
- Control systematics
- Small S/N problem
- Trap confinement enhances overlap with ground state
- Up to N=20 fermions, <1\% errors

Unitary Fermions

- Vary strength of interaction between fermions \longrightarrow crossover from BEC state to BCS state
- Crossover point called unitarity

Figure: W. Ketterle and M. Zwierlein, arXiv:0801.2500

Unitary Fermions

$\rightarrow \mathrm{p} \cot \delta=0 \longrightarrow$ no intrinsic scale except the density
\rightarrow Displays universal features
\rightarrow Non-relativistic, conformal system
\rightarrow Strongly interacting - need non-perturbative techniques

- Other microscopic methods: Schrodinger Eq., GFMC, FN-DMC
- New lattice method - match Schrodinger Eq. to within 1\%

Universal Quantities

Bertsch parameter

- $\mu_{\text {int }}(n)=\xi \mu_{\text {free }}(n)$
- Unitary fermions in an SHO:

$$
E_{\text {int }}(N, \omega)=\sqrt{\xi} E_{\text {free }}(N, \omega)
$$

Pairing gap

- Energy cost to break fermion pairs
- Even-odd splitting:

$$
\Delta(N)=E(N)-\frac{1}{2}(E(N-1)-E(N+1))
$$

Universal Quantities

Bertsch parameter

- $\mu_{\text {int }}(n)=\xi \mu_{\text {free }}(n)$
- Unitary fermions in an SHO:

$$
E_{\text {int }}(N, \omega)=\sqrt{\xi} E_{\text {free }}(N, \omega)
$$

Pairing gap

- Energy cost to break fermion pairs
- Even-odd splitting:

$$
\Delta(N)=E(N)-\frac{1}{2}(E(N-1)-E(N+1))
$$

Lattice Theory

- Non-relativistic fermions interacting via point interactions
- No fermion determinant \longrightarrow quenched $=$ exact
- Highly improved interactions give $\mathrm{p} \cot \delta=0$ to arbitrary order in p^{2}
- Harmonic trap easily implemented:

$$
\begin{gathered}
\mathcal{T}=\mathcal{D}^{-1 / 2}(1-\mathcal{V}) \mathcal{D}^{-1 / 2} \\
\mathcal{V}=V_{\text {int }}+V_{S H O} \\
V_{S H O}=1-e^{-\frac{1}{2} m \omega^{2} \sum_{i=1}^{3}\left(L_{i} / 2-x_{i}\right)^{2}}
\end{gathered}
$$

N-body Correlators

- Slater determinant of single-particle SHO states

N-body Correlators

- Slater determinant of single-particle SHO states
- Include pair correlations*

$$
\psi_{P A I R} \propto \frac{e^{-\left(x^{2}+y^{2}\right) /\left(2 L_{0}^{2}\right)}}{|x-y|}
$$

*J. Carlson, et al, Phys. Rev. Lett. 91 (2003)

N-body Correlators

N-body Correlators

- Slater determinant of single-particle SHO states
- Include pair correlations
- For odd N, add single particle state at sink
\rightarrow Replace nth row in slater matrix

N-body Correlators

- Slater determinant of single-particle SHO states
- Include pair correlations
- For odd N, add single particle state at sink
- For SHO, either is sufficient

Systematic Errors

- Tunable scales set finite volume, finite lattice spacing $\left(b_{t}, b_{s}\right)$ effects
$\rightarrow \omega b_{t} \rightarrow$ temporal discretization error
$\rightarrow \mathrm{b}_{\mathrm{s}} / \mathrm{L}_{0} \rightarrow$ spatial discretization error
$\rightarrow L_{0} / L-$ finite volume error

$$
L_{0}=(m \omega)^{-1 / 2}
$$

- Temporal discretization error
\rightarrow Exponential form of SHO offers some improvement
\rightarrow Ensure small b_{t} errors by choosing small ω

Spatial Errors

Position space potential: PeriodicBC

(ω fixed)

Increase L_{0}, keep L fixed

Interactions with image charges lower energy

Momentum Space: Hard Cutoff

Reduce L_{0}
(ω fixed)

Reduce L_{0} - more sensitivity to infinite potential walls increases energy

Spatial Errors

- Both finite volume and spatial discretization errors affected by changing L_{0}
\rightarrow Finite volume errors push energy down for large L_{0}
\rightarrow Discretization errors push energy up for small L_{0}
- Performed tests at various values of L_{0} to choose ideal value

F. Werner and Y. Castin, Phys.

Rev. Lett. 97. 150401 (2006)

D. Blume, private communication

Results

N	This Work	Comparison	\% Deviation
3	4.253(2)(4)	4.2727	0.5
4	5.058(1)(1)	5.028(20) ${ }^{\dagger}$	0.6
5	7.513(3)(2)	7.457(10) ${ }^{\ddagger}$	0.8
6	8.338(4)(5)	8.357(10) ${ }^{\ddagger}$	0.2

*F. Werner and Y. Castin, Phys. Rev. Lett. 97. 150401 (2006)
\dagger †. Blume, J. von Stecher, and C. Greene, Phys. Rev. Lett. 99. 233201 (2007)
\ddagger D. Blume, private communication

■ FN-DMC: D. Blume, J. von Stecher, Chris H. Greene, arXiv:0708.2734

- GFMC: S. Y. Chang and G. F. Bertsch, arXiv:physics/0703190

Bertsch Parameter

- Performed correlated fits to second shell
- Clear shell structure haven't reached thermodynamic limit

Bertsch Parameter

- Performed correlated fits to second shell
- Clear shell structure \longrightarrow haven't reached thermodynamic limit
- Finite volume effects smaller than 1%
- Results from SHO higher than from box

This Work: 0.450(1)
FN-DMC ~ 0.465
GFMC ~ 0.500

Bertsch Parameter

- Performed correlated fits to second shell
- Clear shell structure \longrightarrow haven't reached thermodynamic limit

This Work: 0.412(4) GFMC: 0.40(1)
Lattice EFT: 0.329(5)

- Finite volume effects smaller than 1\%
- Results from SHO higher than from box

SHO:

This Work: 0.450(1)
FN-DMC ~ 0.465
GFMC ~ 0.500

GFMC: J. Carlson, et al (2008) Lattice EFT: D. Lee (2008)

Gap

Gap

SHO Conclusions

- Possible to study large N to high precision
- Results consistent with high precision Schrodinger Eq. solutions for $\mathrm{N} \leq 6$ to within 1\%
- Better systematics and smaller errors than previous methods

Future directions

- Working to reduce lattice spacing errors further
- Ability to precisely tune p cot δ suggests applicability to nuclear systems
- Trap confinement may be useful for studying bound states of hadrons

Acknowledgements

Parts of these calculations were performed on New York Blue ($B G / L$) at Brookhaven Nationat

