Lattice Study of Trapped Fermions at Unitarity

Amy N. Nicholson

Institute for Nuclear Theory, University of Washington

Lattice 2010 Villasimius, Sardinia June 18, 2010

In collaboration with: David B. Kaplan (INT, UW) Michael G. Endres (Columbia University) Jong-Wan Lee (INT, UW)

Our Goal

• High-precision studies of large, strongly interacting systems of fermions

→ Unitary fermions - ideal laboratory

- Universal physics
- Relevant for all systems with $r_0 \ll n^{-1/3} \ll a$
 - Nuclear matter
 - Cold atom experiments
- → Harmonic trap
- Up to N=20 fermions, <1% errors

Our Goal

- High-precision studies of large, strongly interacting systems of fermions
 - → Unitary fermions ideal laboratory
 - → Harmonic trap
 - Control systematics
 - Small S/N problem
 - Trap confinement enhances overlap with ground state
- Up to N=20 fermions, <1% errors

Unitary Fermions

- Vary strength of interaction between fermions
 crossover from BEC state to BCS state
- Crossover point called unitarity

Unitary Fermions

→ p cot $\delta = 0$ → no intrinsic scale except the density

- → Displays universal features
- → Non-relativistic, conformal system
- → Strongly interacting need non-perturbative techniques
- Other microscopic methods: Schrodinger Eq., GFMC, FN-DMC

 New lattice method – match Schrodinger Eq. to within 1%

Universal Quantities

Bertsch parameter

- $\mu_{int}(n) = \xi \mu_{free}(n)$
- Unitary fermions in an SHO:

$$E_{int}(N,\omega) = \sqrt{\xi} E_{free}(N,\omega)$$

Pairing gap

 Energy cost to break fermion pairs

Universal Quantities

Bertsch parameter

- $\mu_{int}(n) = \xi \mu_{free}(n)$
- Unitary fermions in an SHO:

$$E_{int}(N,\omega) = \sqrt{\xi} E_{free}(N,\omega)$$

Pairing gap

 Energy cost to break fermion pairs

Lattice Theory

- Non-relativistic fermions interacting via point interactions
- No fermion determinant —> quenched = exact
- Highly improved interactions give p cot δ = 0 to arbitrary order in p^2
- Harmonic trap easily implemented:

$$\mathcal{T} = \mathcal{D}^{-1/2}(1-\mathcal{V})\mathcal{D}^{-1/2}$$

$$\mathcal{V} = V_{int} + V_{SHO}$$

Details introduced in talk by M. Endres

 $V_{SHO} = 1 - e^{-\frac{1}{2}m\omega^2 \sum_{i=1}^{3} (L_i/2 - x_i)^2}$

 Slater determinant of single-particle SHO states

- Slater determinant of single-particle SHO states
- Include pair correlations^{*}

$$\psi_{PAIR} \propto rac{e^{-(x^2+y^2)/(2L_0^2)}}{|x-y|}$$

^{*}J. Carlson, et al, Phys. Rev. Lett. **91** (2003)

- Slater determinant of single-particle SHO states
- Include pair correlations
- For odd N, add single particle state at sink
 - Replace nth row in slater matrix

- Slater determinant of single-particle SHO states
- Include pair correlations
- For odd N, add single particle state at sink
- For SHO, either is sufficient

Systematic Errors

- Tunable scales set finite volume, finite lattice spacing (b_t, b_s) effects
 - $\rightarrow \omega b_t \rightarrow$ temporal discretization error
 - $\rightarrow b_s/L_0 \rightarrow$ spatial discretization error
 - $\rightarrow L_0/L \rightarrow$ finite volume error

- Temporal discretization error
 - → Exponential form of SHO offers some improvement
 - \rightarrow Ensure small b_t errors by choosing small ω

Interactions with image charges lower energy

Spatial Errors

- Both finite volume and spatial discretization errors affected by changing L₀
 - → Finite volume errors push energy down for large L_0
 - → Discretization errors push energy up for small L_0
- Performed tests at various values of L₀ to choose ideal value

Results

D. Blume, private communication

D. Blume, private communication

D. Blume, private communication

Ν	This Work	Comparison	% Deviation	
3	4.253(2)(4)	4.2727 [*]	0.5	
4	5.058(1)(1)	5.028(20) [†]	0.6	
5	7.513(3)(2)	7.457(10) [‡]	0.8	
6	8.338(4)(5)	8.357(10) [‡]	0.2	

*F. Werner and Y. Castin, Phys. Rev. Lett. 97. 150401 (2006)

†D. Blume, J. von Stecher, and C. Greene, Phys. Rev. Lett. 99. 233201 (2007)

‡D. Blume, private communication

1.1

Bertsch Parameter

- Performed correlated fits to second shell
- Clear shell structure haven't reached thermodynamic limit

Bertsch Parameter

- Performed correlated a fits to second shell
- Clear shell structure haven't reached thermodynamic limit
- Finite volume effects smaller than 1%
- Results from SHO higher than from box

Bertsch Parameter

- Performed correlated fits to second shell
- Clear shell structure
 haven't reached
 thermodynamic limit
- Finite volume effects smaller than 1%
- Results from SHO higher than from box

GFMC: J. Carlson, et al (2008) Lattice EFT: D. Lee (2008) This Work: 0.412(4) GFMC: 0.40(1) Lattice EFT: 0.329(5)

Box:

SHO Conclusions

- Possible to study large N to high precision
- Results consistent with high precision
 Schrodinger Eq. solutions for N≤6 to within 1%
- Better systematics and smaller errors than previous methods

Future directions

- Working to reduce lattice spacing errors further
- Ability to precisely tune p cot δ suggests applicability to nuclear systems
- Trap confinement may be useful for studying bound states of hadrons

Acknowledgements

Parts of these calculations were performed on New York Blue (BG/L) at Brookhaven National Laboratory