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Our Goal

High-precision studies of large, strongly 
interacting systems of fermions

→ Unitary fermions - ideal laboratory
● Universal physics
● Relevant for all systems with 

– Nuclear matter
– Cold atom experiments

→ Harmonic trap

Up to N=20 fermions, <1% errors

r0≪n−1/3≪a



Our Goal

High-precision studies of large, strongly 
interacting systems of fermions

→ Unitary fermions - ideal laboratory
→ Harmonic trap

● Control systematics
● Small S/N problem
● Trap confinement enhances 

overlap with ground state

Up to N=20 fermions, <1% errors



Vary strength of interaction between fermions     
      crossover from BEC state to BCS state

Crossover point called unitarity

Unitary Fermions

Figure: W. Ketterle and M. Zwierlein, arXiv:0801.2500
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Unitary Fermions

→ p cot δ = 0        no intrinsic scale except the 
density

→ Displays universal features
→ Non-relativistic, conformal system

→ Strongly interacting – need non-perturbative 
techniques

 Other microscopic methods: Schrodinger Eq., 
GFMC, FN-DMC

 New lattice method – match Schrodinger Eq. to 
within 1%



Universal Quantities

Bertsch parameter

Unitary fermions in an 
SHO:

Pairing gap

Energy cost to 
break fermion pairs

Even-odd splitting:
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Lattice Theory

Non-relativistic fermions interacting via point 
interactions

No fermion determinant        quenched = exact

Highly improved interactions give p cot δ = 0 to 
arbitrary order in p2

Harmonic trap easily implemented:

⁎ Details introduced in 
talk by M. Endres



N-body Correlators

Slater determinant of 
single-particle SHO 
states



N-body Correlators

Slater determinant of 
single-particle SHO 
states

Include pair 
correlations*

*J. Carlson, et al, Phys. Rev. Lett. 91 (2003)
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N-body Correlators

Slater determinant of 
single-particle SHO 
states

Include pair 
correlations

For odd N, add single 
particle state at sink

Replace nth row in 
slater matrix

quasiparticle
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N-body Correlators

Slater determinant of 
single-particle SHO 
states

Include pair 
correlations

For odd N, add single 
particle state at sink

For SHO, either is 
sufficient
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Systematic Errors

Tunable scales set finite volume, finite lattice 
spacing (bt, bs) effects

→ ωbt      temporal discretization error 

→ bs/L0     spatial discretization error

→ L0/L     finite volume error

Temporal discretization error
→ Exponential form of SHO offers some 

improvement

→ Ensure small bt errors by choosing small ω



Position space potential: PeriodicBC

Spatial Errors
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Increase L0, keep L fixed

(ω fixed)

L



Interactions with image charges lower energy

x



1 /L0

~

p

Momentum Space: Hard Cutoff

/bs



Reduce L0       

1 /L0

(ω fixed)

p/b s



Reduce L0 - more sensitivity to infinite 
potential walls increases energy

p/b s



Spatial Errors

Both finite volume and spatial discretization 
errors affected by changing L0

→ Finite volume errors push energy down for large 
L0  

→ Discretization errors push energy up for small 
L0   

Performed tests at various values of L0 to 
choose ideal value



N=3

F. Werner and Y. Castin, Phys. 
Rev. Lett. 97. 150401 (2006)

L = 32
ω = 0.013



N=6

 D. Blume, private communication

L = 32
ω = 0.013



Results



L = 32

N = 19

N = 3 N = 7

N = 20



 D. Blume, private communication

N = 20N = 6



 D. Blume, private communication

1.7%
N = 20N = 6

1.5%



 D. Blume, private communication

N = 20N = 6

0.1% 0.4%



N This Work Comparison % Deviation

3 4.253(2)(4) 4.2727* 0.5

4 5.058(1)(1) 5.028(20)† 0.6

5 7.513(3)(2) 7.457(10)‡ 0.8

6 8.338(4)(5) 8.357(10)‡ 0.2

*F. Werner and Y. Castin, Phys. Rev. Lett. 97. 150401 (2006)
†D. Blume, J. von Stecher, and C. Greene, Phys. Rev. Lett. 99. 233201 (2007)
‡D. Blume, private communication
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FN-DMC: D. Blume, J. von Stecher, Chris H. Greene, arXiv:0708.2734

GFMC: S. Y. Chang and G. F. Bertsch, arXiv:physics/0703190



Bertsch Parameter

Performed correlated 
fits to second shell 

Clear shell structure    
      haven't reached 
thermodynamic limit
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Bertsch Parameter

Performed correlated 
fits to second shell

Clear shell structure    
      haven't reached 
thermodynamic limit

Finite volume effects 
smaller than 1%

Results from SHO 
higher than from box

This Work: 0.450(1)  
FN-DMC ~ 0.465 
GFMC ~ 0.500
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This Work: 0.412(4) 
GFMC: 0.40(1)
Lattice EFT: 0.329(5)

Box:

SHO:
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GFMC: J. Carlson, et al (2008)
Lattice EFT: D. Lee (2008)  



Gap



Gap



SHO Conclusions

Possible to study large N to high precision

Results consistent with high precision 
Schrodinger Eq. solutions for N≤6 to within 1%

Better systematics and smaller errors than 
previous methods



Future directions

Working to reduce lattice spacing errors further 

Ability to precisely tune p cot δ suggests 
applicability to nuclear systems

Trap confinement may be useful for studying 
bound states of hadrons
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