Extracting Scattering Parameters via Isospin Chemical Potential

Michael I. Buchoff University of Maryland, College Park

> Lattice 2010 June 18, 2010

Proposal

Explore two separate topics:

 Tie these two concepts together to extract scattering information previously inaccessible from lattice calculations

Hadronic Scattering

• Understanding strongly mediated scattering is important for describing low-energy phenomena

Meson-Meson $\pi\pi$, $K\pi$, \cdots Baryon-Meson πN , KN, $\pi\Sigma$, \cdots Baryon-BaryonNN, $\Lambda\Xi$, \cdots

Hadronic Scattering

• Understanding strongly mediated scattering is important for describing low-energy phenomena

Meson-Meson $\pi\pi$, $K\pi$, \cdots Baryon-Meson πN , KN, $\pi\Sigma$, \cdots Baryon-BaryonNN, $\Lambda\Xi$, \cdots

"Non-annihilation" Contribution

Final

"Non-annihilation" Contribution

Final

- Only "Non-annihilation" Contributions for this process

 $\pi^- n \to \pi^- n$

 $\pi^- n \to \pi^- n$

"Non-annihilation" Contribution

Final

 $\pi^- n \to \pi^- n$

 $\pi^- n \to \pi^- n$

"Annihilation" Contribution

Final

 $\pi^- n \to \pi^- n$

"Annihilation" Contribution

Final

- Annihilation diagrams often prohibitively expensive for lattice

Brute Force Calculation

 VERY Expensive!
 (Whole matrix >> One Column)

- Brute Force Calculation

 VERY Expensive!
 (Whole matrix >> One Column)
- Improve algorithms for all-to-all propagators

- Progress has been made...but still expensive for large lattices

Brute Force Calculation
 VERY Expensive!

(Whole matrix >> One Column)

- Improve algorithms for all-to-all propagators

- Progress has been made...but still expensive for large lattices

Our Solution: Measure something else!

The Big Idea...

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

Example: Scalar Condensate

$$\phi(x) = \phi_0 + \tilde{\phi}(x)$$

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

Example: Scalar Condensate

$$\phi(x) = \phi_0 + \tilde{\phi}(x)$$

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

Example: Scalar Condensate

$$\phi(x) = \phi_0 + \tilde{\phi}(x)$$

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

$$\phi(x) = \phi_0 + \tilde{\phi}(x)$$
$$\phi_0 \neq 0$$

 If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

$$\phi(x) = \phi_0 + \tilde{\phi}(x)$$
$$\phi_0 \neq 0$$

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

• If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

 If a hadronic condensate could be dynamically generated, measure resulting shift in the mass!

Isospin Chemical Potential

$$\mathcal{L}_F = \overline{\psi} \Big[\Big(i (\mathcal{D} + i \mu \gamma_0 \frac{\tau^3}{2} \Big) - m_q \Big] \psi$$
$$m_q = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \psi = \begin{pmatrix} u \\ d \end{pmatrix} \tau^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Two key features

Isospin Chemical Potential

$$\mathcal{L}_F = \overline{\psi} \Big[\Big(i \big(\not \!\!\!D + i \mu \gamma_0 \frac{\tau^3}{2} \Big) - m_q \Big] \psi \\ m_q = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \psi = \begin{pmatrix} u \\ d \end{pmatrix} \tau^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Two key features

I) Can be simulated on the lattice

- Avoids fermion sign problem as a result of positive-definite determinant

 $M^{\dagger} = \tau_1 \gamma_5 M \gamma_5 \tau_1 \quad \longrightarrow \quad \det M = \det M^{\dagger}$

Isospin Chemical Potential

$$\mathcal{L}_F = \overline{\psi} \Big[\Big(i (\not D + i \mu \gamma_0 \frac{\tau^3}{2} \Big) - m_q \Big] \psi$$
$$m_q = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \psi = \begin{pmatrix} u \\ d \end{pmatrix} \tau^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Two key features

I) Can be simulated on the lattice

- Avoids fermion sign problem as a result of positive-definite determinant

 $M^{\dagger} = \tau_1 \gamma_5 M \gamma_5 \tau_1 \quad \longrightarrow \quad \det M = \det M^{\dagger}$

2) Can form pion condensate

- Occurs when chemical potential exceeds critical value

• Include chemical potential as static gauge field $\mathbb{V}_{\mu}=\mu_{I}\frac{\tau^{3}}{2}\delta_{\mu,0}$

- Include chemical potential as static gauge field $\mathbb{V}_{\mu}=\mu_{I}\frac{\tau^{3}}{2}\delta_{\mu,0}$
- Unitary Fields: $U = e^{i\alpha\hat{\pi}\cdot\tau} = \cos\alpha + i(\hat{\pi}\cdot\tau)\sin\alpha$ Minimizing Potential $\cos\alpha = \frac{m_{\pi}^2}{\mu^2}$ Son, Stephanov (2000)

- Include chemical potential as static gauge field $\mathbb{V}_{\mu}=\mu_{I}\frac{\tau^{3}}{2}\delta_{\mu,0}$
- Unitary Fields: $U = e^{i\alpha\hat{\pi}\cdot\tau} = \cos\alpha + i(\hat{\pi}\cdot\tau)\sin\alpha$ Minimizing Potential $\cosh\alpha = \frac{m_{\pi}^2}{\mu^2} \operatorname{Son, Stephanov}(2000)$ In the condensed phase: $\langle \overline{\psi}\psi \rangle = f^2\lambda\cos\alpha$ $i\langle \overline{\psi}\tau^2\gamma_5\psi \rangle = f^2\lambda\sin\alpha$

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

Condensate

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

Thus, we need to find dependence on the Condensate and Chemical Potential

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

Thus, we need to find dependence on the Condensate and Chemical Potential

Effective field theory can accomplish this task

 Now that we have a pion condensate, we can extract pion-hadron scattering information by measuring the mass shift of the hadron

Thus, we need to find dependence on the Condensate and Chemical Potential

Effective field theory can accomplish this task

 $M_N = M_N^{(0)} - \mu_I \cos \alpha \frac{\tau^3}{2} + 4c_1 \left(m_\pi^2 \cos \alpha + \lambda \epsilon \sin \alpha \right)$ $+ \left(c_2 - \frac{g_A^2}{8M} + c_3 \right) \mu_I^2 \sin^2 \alpha$

 $M_N = M_N^{(0)} - \mu_I \cos \alpha \frac{\tau^3}{2} + 4c_1 \left(m_\pi^2 \cos \alpha + \lambda \epsilon \sin \alpha \right)$ $+ \left(c_2 - \frac{g_A^2}{8M} + c_3 \right) \mu_I^2 \sin^2 \alpha$

Scattering Parameters

Scattering Parameters

- Chemical Potential acts as an additional "knob" for extracting low-energy constants

Scattering Parameters

- Chemical Potential acts as an additional "knob" for extracting low-energy constants
 - Cannot disentangle c_2 from c_3

Can we extract more parameters?

Twisted boundary conditions with condensate:

- Can disentangle pair of low-energy constants Two-flavor example: (c_2, c_3)

- Can extract single axial couplings Two-flavor example: g_A

Follow up calculations

- Include strange quark (no strange chem. pot.)
 - S = 2 coupling to pions
 - -S = I coupling to pions
- Match those couplings to three-flavor EFT
 - Give insight to kaon-nucleon

- EFT shift of meson masses in pion condensate
 - Extract parameters for meson-pion

Follow up calculations

• Include strange quark (no strange chem. pot.)

- -S = 2 coupling to pions
- S = I coupling to pions \blacktriangleleft
- Match those couplings to three-flavor EFT
 - Give insight to kaon-nucleon <

Bedaque, MIB, Tiburzi (2009)

EFT shift of meson masses in pion condensate
 Extract parameters for meson-pion

Final Word: Future Applications

• Spectroscopy with condensate (new "knob" to vary)

Condensate

- Other quantities in presence of pion condensate
 - Heavy Quark Potential
 - Two meson phase shifts
- Virial coefficients from thermodynamic lattices
 - Information on three or four meson interactions