Renormalization Constants for 1-derivative operators in twisted mass QCD

Lattice 2010, Sardinia

June 14, 2010

C. Alexandrou, M. Constantinou, T. Korzec

H. Panagopoulos, F. Stylianou

Physics Department, University of Cyprus

うして 山口 マイビマ エリッ コーシック

OUTLINE

A Non-perturbative renormalization

- Fermion and gluon actions
- Computation of Green's functions
- **B** Renormalization Conditions
 - fermion field
 - ultralocal and twist-2 operators
- C Perturbative renormalization
 - $\mathcal{O}(a^2)$ corrections to ultralocal fermion bilinears
 - $\mathcal{O}(a^2)$ corrections to twist-2 fermion bilinears

D Results

- $N_F = 2$: Z_A, Z_V
- $N_F = 2$: Z_{DA}, Z_{DV}
- $N_F = 2 + 1 + 1$: Z_A, Z_V, Z_{DA} (Preliminary)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

NON-PERTURBATIVE RENORMALIZATION

 $N_F = 2$ Twisted mass fermions (twisted basis)

$$S_F = a^4 \sum_x \overline{\chi}(x) \left(\frac{1}{2}\gamma_\mu (\overrightarrow{\nabla}_\mu + \overrightarrow{\nabla}_\mu^*) - \frac{ar}{2} \overrightarrow{\nabla}_\mu \overrightarrow{\nabla}_\mu^* + m_0 + i\mu_0 \gamma_5 \tau^3 \right) \chi(x)$$

physical basis at maximal twist

$$\psi(x) = \exp\left(\frac{i\pi}{4}\gamma_5\tau^3\right)\chi(x), \qquad \overline{\psi}(x) = \overline{\chi}(x)\exp\left(\frac{i\pi}{4}\gamma_5\tau^3\right)$$

Tree-level Symanzik improved gluons

$$S_g = \frac{\beta}{3} \sum_x \left(\frac{5}{3} \sum_{\substack{\mu,\nu=1\\1 \le \mu < \nu}}^4 \left\{ 1 - \operatorname{Re} \operatorname{Tr}(U_{x,\mu,\nu}^{1 \times 1}) \right\} - \frac{1}{12} \sum_{\substack{\mu,\nu=1\\\mu \neq \nu}}^4 \left\{ 1 - \operatorname{Re} \operatorname{Tr}(U_{x,\mu,\nu}^{1 \times 2}) \right\} \right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ = - のへで

$N_F = 2$: Statistics

β	a (fm)	$a\mu_0$	m_π (GeV)	$L^3 imes T$
3.9	0.089	0.0040	0.3021(14)	$24^3 \times 48$
3.9	0.089	0.0064	0.37553(80)	$24^3 \times 48$
3.9	0.089	0.0085	0.4302(11)	$24^3 \times 48$
4.05	0.070	0.006	0.4082(31)	$24^3 imes 48$
4.05	0.070	0.006	0.404(2)	$32^3 \times 64$
4.05	0.070	0.008	0.465(1)	$32^3 \times 64$
4.20	0.055	0.0065	0.476(2)	$32^3 \times 64$

$(n_{t}, n_{x}, n_{y}, n_{z})$	$\beta = 3.9$ $24^3 \times 48$	$\beta = 3.9$ $24^3 \times 48$	$\beta = 3.9$ $24^3 \times 48$	$\beta = 4.05$ $24^3 \times 48$	$\beta = 4.05$ $32^3 \times 64$	$\beta = 4.05$ $32^3 \times 64$	$\beta = 4.20$ $32^3 \times 64$
(,g,2)	$\mu_0 = 0.004$	$\mu_0 = 0.0064$	$\mu_0 = 0.0085$	$\mu_0 = 0.006$	$\mu_0 = 0.006$	$\mu_0 = 0.008$	$\mu_0 = 0.0065$
(4,2,2,2)	100	50	80	_	50	50	15
(5,2,2,2)	100	60	60	_	—	33	15
(6,2,2,2)	100	50	50	_	—	50	15
(3,3,3,2)	—	—	27	—	—	15	15
(7,2,2,2)	—	—	20	—	—	15	15
(2,3,3,3)	—	—	20	—	—	15	15
(8,2,2,2)	_	—	20	—	—	15	15
(3,3,3,3)	100	50	80	15	—	50	15
(4,4,4,4)	_	_	_	—	15	_	—
(4,3,3,3)	100	60	60	—	—	50	15
(5,3,3,3)	100	60	60	—	—	50	15
(6,3,3,3)	—	—	15	—	—	15	15
(10,2,2,2)	—	—	15	—	—	15	15
(9,3,3,3)	—	—	_	—	—	15	15
(10,3,3,3)	—	—	_	—	—	15	15
(13,2,2,2)	_	_	_	_	_	15	15
(11,3,3,3)	_	_	_	_	_	15	15
(14,2,2,2)	_	_	_	_		15	15

Non-amputated Green's function (Physical basis)

$$G_{\alpha\delta}(p) = \frac{a^{12}}{V} \sum_{x,y,z} e^{-ip \cdot (x-y)} \langle u_{\alpha}(x) \mathcal{O}_{\Gamma}(z) \bar{d}_{\delta}(y) \rangle$$

No disconnected diagrams

$$\mathcal{O}_{\mathbf{V}}^{\mu}(z) = \bar{u}(z) \gamma^{\mu} d(z)$$
$$\mathcal{O}_{\mathbf{A}}^{\mu}(z) = \bar{u}(z) \gamma^{5} \gamma^{\mu} d(z)$$
$$\mathcal{O}_{\mathbf{DV}}^{\{\mu\nu\}}(z) = \bar{u}(z) \gamma^{\{\mu} \overrightarrow{D}^{\nu\}} d(z)$$
$$\mathcal{O}_{\mathbf{DA}}^{\{\mu\nu\}}(z) = \bar{u}(z) \gamma^{5} \gamma^{\{\mu} \overrightarrow{D}^{\nu\}} d(z)$$
$$\mathcal{O}^{\{\mu\nu\}} = \frac{1}{2} \left(\mathcal{O}^{\mu\nu} + \mathcal{O}^{\nu\mu} \right) - \frac{1}{4} \delta_{\mu\nu} \sum_{\rho} \mathcal{O}^{\rho\rho}$$

<日 > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\mathcal{O}_{\mathbf{DV},\mathbf{DA}}(z) \equiv \bar{u}(z) J_{\mathbf{DV},\mathbf{DA}}(z,z')$ z,z': nearest neighbors

[·] No mixing with lower dimension operators

Upon Wick contraction + Gauge field average

 $\mathcal{U}(x,z)\,,\,\mathcal{D}(z',y)$: up, down propagators

Method A: point source

$$\star$$
 Fixed value for $z (z = 0)$

$$G_{\alpha\delta}(p) = a^8 \sum_{x,y} e^{-ip \cdot (x-y)} \langle \mathcal{U}_{\alpha\beta}(x,0) J^{\Gamma}_{\beta\gamma}(0,z') \mathcal{D}_{\gamma\delta}(z',y) \rangle^G$$

$$z' \text{ neighbors of } z = 0$$

- **\star** Point to all propagators: S(z, x), S(z', x)
- \star Dirac equation solvable with point source at the fixed value of z
- ★ Translation invariance ↔ Average over gauge field configurations
- ★ Less inversions, but larger statistical errors

Method B: momentum source

$$\sum_{z} \mathcal{K}^{ac}_{\alpha\gamma}(x,z) \underbrace{\sum_{y} e^{ip \cdot y} \mathcal{D}^{cb}_{\beta\gamma}(z,y)}_{\breve{\mathcal{D}}^{cb}_{\beta\gamma}(z,p)} = e^{ip \cdot x} \,\delta_{\alpha\beta} \,\delta_{ab}$$

 \mathcal{K} : Dirac operator for down quark

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \star Perform the summation over z
- Dirac equation solved with momentum source
- \star \sharp of inversion depends on the \sharp of momenta considered
- Application of any operator
- High statistical accuracy is achieved

Propagators

Twisted basis:

up quark

$$\mathcal{S}^{ab}_{\alpha\beta}(p) = -\frac{a^8}{4\,V} \sum_{z} \langle \,\mathrm{e}^{\mathrm{i}p\cdot z} \left[(\hat{1} - i\,\gamma^5) \breve{\mathcal{D}}^\dagger(z,p) (\hat{1} - i\,\gamma^5) \right]^{ab}_{\alpha\beta} \,\rangle$$

down quark

$$\mathcal{S}^{ab}_{\alpha\beta}(p) = \frac{a^8}{4V} \sum_{z} \langle e^{-\mathrm{i}p \cdot z} \left[(\hat{1} - i\gamma^5) \breve{\mathcal{D}}(z, p) (\hat{1} - i\gamma^5) \right]^{ab}_{\alpha\beta} \rangle$$

Amputated Green's Function

Bare $\Gamma(p) = \mathcal{S}^{-1}(p)G(p)\mathcal{S}^{-1}(p)$

Renormalized

$$\Gamma_R(p) = Z_q^{-1} Z_\mathcal{O} \Gamma(p)$$

 $Z_q^{-1} Z_{\mathcal{O}}$ extracted from G(p), S(p)

Renormalization Conditions (RI'-MOM scheme):

-1

$$Z_q = \frac{1}{12} \operatorname{Tr}[(S^L(p))^{-1} S^{(0)}(p)]\Big|_{p^2 = \mu^2}$$
$$Z_q^{-1} Z_{\mathcal{O}}^{\mu\nu} \frac{1}{12} \operatorname{Tr}[\Gamma^L_{\mu\nu}(p) \Gamma^{(0)-1}{}_{\mu\nu}(p)]\Big|_{p^2 = \mu^2} = 1$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reliable perturbation theory

Small $\mathcal{O}(a)$ lattice effects

PERTURBATIVE RENORMALIZATION

Motivation for $\mathcal{O}(a^2)$ corrections

\star Perturbative computation of $\mathcal{O}(a^2)$ terms \Rightarrow subtraction of these effects from non-perturbative result \Rightarrow

minimization of their lattice artifacts

Complications with $\mathcal{O}(a^2)$

- $\star \mathcal{O}(a^1)$: No new types of IR divergences
- $\star O(a^2)$: Novel IR singularities

Non-Lorentz invariant contributions, e.g., $a^2 m \frac{\sum_{\mu} \gamma_{\mu} p_{\mu}^3}{r^2}$

Large number of strong divergent integrals

Matrix elements of Green's functions

- Fermion action: Wilson, Twisted mass, clover
- Gluon action: 10 sets of Symanzik improved gluons
- Up to 2nd order in the lattice spacing *a*
- General covariant gauge λ
- General clover parameter c_{SW}
- General values for momentum p and lattice spacing a

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• General values for the masses m and μ

Feynman Diagrams

- Wick contraction of appropriate vertices
- Simplification of color dependence, Dirac matrices, tensors
- Exploitation of symmetries of the theory and of the diagrams
- Isolation of the logarithmic and non-Lorentz invariant terms:
 - hundreds of <u>new</u> primitive divergent integrals many to $\mathcal{O}(a^3)$
 - ★ 11 strong IR divergent integrals

M. Constantinou et al., JHEP 0910:064, 2009 [arXiv:0907.0381]

- ▶ Convergent terms: Taylor expansion in p and a up to $O(a^3p^3)$
- ▶ Numerical integration over the internal momentum k
- **Extrapolation of results to** $L \rightarrow \infty$
 - only source of systematic errors

Renormalization Conditions (RI'-MOM scheme):

-1

$$Z_q = \frac{1}{12} \operatorname{Tr}[(S^L(p))^{-1} S^{(0)}(p)]\Big|_{p^2 = \mu^2}$$
$$Z_q^{-1} Z_{\mathcal{O}}^{\mu\nu} \frac{1}{12} \operatorname{Tr}[\Gamma^L_{\mu\nu}(p) \Gamma^{(0)-1}{}_{\mu\nu}(p)]\Big|_{p^2 = \mu^2} = 1$$

$$S^{(0)}(p) = \frac{-i\sum_{\rho} \gamma_{\rho} \sin(p_{\rho})}{\sum_{\rho} \sin(p_{\rho})^{2}}$$
$$\Gamma^{(0)}_{\mu\nu}(p) = -i\tilde{\Gamma}_{\{\mu} \sin(p_{\nu\})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Reliable perturbation theory

Small $\mathcal{O}(a)$ lattice effects

twist-2 renormalization factors

Vector:

$$Z_{\rm DV1} = Z_{\rm DV} \text{ with } \mu = \nu$$
$$Z_{\rm DV2} = Z_{\rm DV} \text{ with } \mu \neq \nu$$

Axial:

$$Z_{\text{DA1}} = Z_{\text{DA}} \text{ with } \mu = \nu$$

 $Z_{\text{DA2}} = Z_{\text{DA}} \text{ with } \mu \neq \nu$

Example of Perturbative Results:

- Tree-level Symanzik gluons , $c_{\rm SW}=0$
- Landau gauge
- m = 0, $\mu_0 = 0$

$$\begin{split} \operatorname{Tr} \Big[L^{\mathrm{DV1}}(p) \cdot L^{\mathrm{DV1}}_{\mathrm{tree}}(p) \Big] &= -2\,p_{\mu}^2 - \frac{1}{4}p^2 + a^2 \big(\frac{1}{12} \sum_{\rho} p_{\rho}^4 + \frac{2}{3} p_{\mu}^4 \big) \\ &+ \tilde{g}^2 \Big\{ \frac{4}{3} \frac{p_{\mu}^4}{p^2} + p^2 \left(3.610062(3) - \frac{2}{3} \ln(a^2 \, p^2) \right) + p_{\mu}^2 \left(27.54716(3) - \frac{16}{3} \ln(a^2 \, p^2) \right) \\ &+ a^2 \Big[(p^2)^2 \left(0.11838(2) + \frac{7}{288} \ln(a^2 \, p^2) \right) + p^2 \, p_{\mu}^2 \left(-0.6573(1) - \frac{299}{180} \ln(a^2 \, p^2) \right) \\ &+ \sum_{\rho} p_{\rho}^4 \left(-1.71886(3) + \frac{397}{720} \ln(a^2 \, p^2) - \frac{43}{360} \frac{p_{\mu}^2}{p^2} \right) \\ &+ p_{\mu}^4 \left(-16.1049(5) + \frac{94}{15} \ln(a^2 \, p^2) + \frac{29}{90} \frac{\sum_{\rho} p_{\rho}^4}{(p^2)^2} + \frac{169}{45} \frac{p_{\mu}^2}{p^2} \right) \Big] \Big\} \\ &+ \quad \mathcal{O}(a^4, g^4) \end{split}$$

 $L^{\mathrm{DV1}}(p)$: matrix element of Green's function up to 1-loop

$$L_{\text{tree}}^{\text{DV1}}(p) = i\gamma_{\mu} \left(p_{\mu} - a^2 \frac{p_{\mu}^3}{6} \right) - \frac{i}{4} \sum_{\tau} \gamma_{\tau} \left(p_{\tau} - a^2 \frac{p_{\tau}^3}{6} \right) + \mathcal{O}(a^4)$$

Ambiguity on the choice of the momentum direction

C. Alexandrou et al., [arXiv:1006.1920]

Comparison of renormalization conditions 1 and 2:

Averaging spatial and temporal components (Method 1):

RESULTS

A. Quark mass dependence

 $\beta = 3.9, a = 0.089 \text{ fm}$ $24^3 \times 48$

$$\beta$$
=3.9, *a*=0.089 fm
24³ × 48

\star Same behavior for $Z_{DV2}, Z_{DA1}, Z_{DA2}$

B. Volume effects

local operators Z_V , Z_A (unsubtracted):

$L^3 \times T$	Z_V	Z_A
$24^3 \times 48$	0.706833(7)	0.793087(8)
$32^3 \times 64$	0.706886(5)	0.793455(6)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

twist-2 Z_{DV} , Z_{DA} (unsubtracted):

$L^3 \times T$	Z_{DV1}	Z_{DV2}	Z_{DA1}	Z_{DA2}
$24^3 \times 48$	1.0700(2)	1.0923(2)	1.1190(2)	1.1117(2)
$32^3 \times 64$	1.07123(6)	1.0928(2)	1.12037(7)	1.1122(2)

• errors in parenthesis: statistical

C. Renormalization scale dependence

local operators Z_V, Z_A :

Image: A math and A Э ł

500

D. Conversion to $\overline{\mathrm{MS}}$

$$C_{\rm DV1} = 1 + \alpha \left[-\frac{136}{27} + \frac{64}{9} \frac{\mu_{\mu}^2 - \frac{\mu_{\mu}^4}{\mu^2}}{\mu^2 + 8\mu_{\mu}^2} \right]$$

$$+ \alpha^{2} \left[-\frac{128096}{729} + N_{F} \left(\frac{3208}{243} - \frac{320}{9} \frac{\mu_{\mu}^{2} - \frac{\mu_{\mu}^{4}}{\mu^{2}}}{\mu^{2} + 8\mu_{\mu}^{2}} \right) + \frac{248}{9} \zeta(3) + \frac{\mu_{\mu}^{2} - \frac{\mu_{\mu}^{4}}{\mu^{2}}}{\mu^{2} + 8\mu_{\mu}^{2}} \left(\frac{17792}{27} + \frac{320}{9} \zeta(3) \right) \right]$$

$$+ \alpha^{3} \left[-\frac{627867571}{78732} - \frac{64 \pi^{4}}{729} + \frac{5588641}{2187} \zeta(3) + N_{F}^{2} \left(-\frac{149552}{6561} + \frac{77440}{729} \frac{\mu_{\mu}^{2} - \frac{\mu_{\mu}^{4}}{\mu^{2}}}{\mu^{2} + 8\mu_{\mu}^{2}} - \frac{256}{243} \zeta(3) \right) \right]$$

$$+ N_F \left(\frac{19947676}{19683} + \frac{64 \pi^4}{243} - \frac{1600}{27} \zeta(3) + \frac{\mu_{\mu}^2 - \frac{\mu_{\mu}^4}{\mu^2}}{\mu^2 + 8\mu_{\mu}^2} \left(-\frac{121024}{27} + \frac{9856}{81} \zeta(3) \right) \right)$$

$$-\frac{19420}{27}\zeta(5)+\frac{\mu_{\mu}^{2}-\frac{\mu_{\mu}^{4}}{\mu^{2}}}{\mu^{2}+8\mu_{\mu}^{2}}\left(\frac{270701210}{6561}-\frac{2993992}{243}\zeta(3)+\frac{349600}{81}\zeta(5)\right)\right]+\mathcal{O}(\alpha^{4})$$

 $\begin{array}{c} \alpha = g^2/(16\pi^2) \\ N_c = 3 \\ \lambda = 0 \end{array}$

$$\begin{split} C_{\rm DV2} &= 1 + \alpha \left[-\frac{124}{27} - \frac{16}{9} \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} \right] \\ &+ \alpha^{2} \left[-\frac{98072}{729} + N_{F} \left(\frac{2668}{243} + \frac{80}{9} \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} \right) + \frac{268}{9} \zeta(3) + \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} \left(-\frac{4448}{27} - \frac{80}{9} \zeta(3) \right) \right] \\ &+ \alpha^{3} \left[-\frac{849683327}{157464} - \frac{64\pi^{4}}{729} + \frac{7809041}{4374} \zeta(3) + N_{F}^{2} \left(-\frac{105992}{6561} - \frac{19360}{729} \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} - \frac{256}{243} \zeta(3) \right) \right] \\ &+ N_{F} \left(\frac{14433520}{19683} + \frac{64\pi^{4}}{243} - \frac{4184}{81} \zeta(3) + \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} \left(\frac{30256}{27} - \frac{2464}{81} \zeta(3) \right) \right) \\ &- \frac{36410}{81} \zeta(5) + \frac{\mu_{\mu}^{2} \mu_{\nu}^{2}}{\mu^{2} (\mu_{\mu}^{2} + \mu_{\nu}^{2})} \left(-\frac{135350605}{13122} + \frac{748498}{243} \zeta(3) - \frac{87400}{81} \zeta(5) \right) + \mathcal{O}(\alpha^{4}) \end{split}$$

Evolving to μ =2 GeV: running coupling, anomalous dimension

$$Z_{\mathcal{O}}^{\overline{\mathrm{MS}}}(2GeV) = R_{\mathcal{O}}(2GeV, \mu) \cdot C_{\mathcal{O}}(\mu) \cdot Z_{\mathcal{O}}^{\mathrm{RI}'}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

) Q (

Results ($\overline{\rm MS}$ at 2GeV)

β	Z_V	Z_A
3.9	0.635(4)	0.757(3)
4.05	0.669(5)	0.776(3)
4.20	0.690(4)	0.789(3)

β	Z_{DV1}	Z_{DV2}	Z_{DA1}	Z_{DA2}
3.90	1.038(10)(20)	1.1293(69)(34)	1.174(8)(11)	1.153(6)(16)
4.05	1.0969(48)(42)	1.110(14)(26)	1.147(13)(24)	1.159(7)(16)
4.20	1.114(11)(17)	1.103(21)(42)	1.139(21)(40)	1.159(9)(20)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Systematic errors:

- $(a p)^2$ within [1.2, 2.7]
- $(a p)^2$ within [1, 2.7]
- $(a p)^2$ within [1.2, 2.2]

Preliminary results on $N_F = 2 + 1 + 1$, a = 0.078 fm

Quark mass dependence

 $m_{\rm pion} = 0.456~{\rm GeV},\, a = 0.078~{\rm fm}$

Summary

- $\mathcal{O}(a^2)$ subtraction are crucial
- Quark mass dependence is insignificant
- Similarly for $N_F = 2 + 1 + 1$
- Volume dependence is very small

Future Work

- Complete $N_F = 2 + 1 + 1$ computations
- Consider $N_F = 4$ computation and compare with $N_F = 2 + 1 + 1$

A D > A 日 > A H = A

THANK YOU

Backup Slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

Method B: momentum source

Twisted basis:

$$\begin{aligned} G^{ad}_{\alpha\delta}(p) &= \frac{1}{4V} \sum_{x,y,z} e^{-ip \cdot (x-y)} \left\langle \left[(\hat{1}+i\gamma^5) \mathcal{D}(x,z)(\hat{1}+i\gamma^5) \right]^{ab}_{\alpha\beta} \tilde{J}^{bc}_{\beta\gamma}(z,z') \right. \\ & \left[(\hat{1}-i\gamma^5) \mathcal{D}(z',y)(\hat{1}-i\gamma^5) \right]^{cd}_{\gamma\delta} \left\rangle^G \end{aligned}$$

exact relation:

$$\mathcal{U}(x,z) = \gamma^5 \mathcal{D}^{\dagger}(z,x) \gamma^5$$

$$\begin{aligned} G^{ad}_{\alpha\delta}(p) &= -\frac{1}{4\,V} \sum_{z} \left\langle \left[(\hat{1} - i\,\gamma^5) \sum_{x} \mathcal{D}^{\dagger}(z,x) \mathrm{e}^{-\mathrm{i}p \cdot x} (\hat{1} - i\,\gamma^5) \right]^{ab}_{\alpha\beta} \, \tilde{J}^{bc}_{\beta\gamma}(z,z') \\ & \left[(\hat{1} - i\,\gamma^5) \sum_{y} \mathcal{D}(z',y) \mathrm{e}^{\mathrm{i}p \cdot y} (\hat{1} - i\,\gamma^5) \right]^{cd}_{\gamma\delta} \right\rangle^G \end{aligned}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ . □ . のへぐ

 $m_{\rm pion} = 0.456~{\rm GeV}, \, a = 0.078~{\rm fm}$

