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We study Gluon Propagator in Landau gauge in SU(3) lattice QCD
at =5.7, 5.8 and 6.0 at quenched level.

Landau gauge is one of the most popular gauges in QCD and keeps
Lorentz covariance and global color symmetry.
It is often used in lattice QCD, Schwinger-Dyson formalism, and so on.

We study Functional Form of Coordinate-Space Gluon Propagator.

Our main interest is Infrared and Intermediate region of
r = 0.1~1.0 fm, which is relevant for quark-hadron physics.

Based on the obtained Gluon Propagator form, we derive Analytical
expression of Gluon Spectral Function p(w) for the first time.

Reference: T. Iritani, H. S, H. lida, Phys. Rev. D80 (2009) 114505 (20 pages),
“Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD:
Yukawa-type gluon propagator and anomalous gluon spectral function”.
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Landau Gauge Fixing and Gluon Field in Lattice QCD

In Euclidean QCD, Landau gauge has a Global definition
to minimize “Total amount of Gauge-field Fluctuation”,

R = /ddm Tr{A,(z)A,(z)} = %fddmﬂﬂ () A% (z)

by the gauge transformation.

In the global definition, Landau gauge has a clear physical
Interpretation that it maximally suppresses Gauge-field Fluctuation.

In Lattice QCD, Landau gauge fixing is defined by maximization of

Riae = » Y Re Tr Uy(a)

Gluon fields (hermite Iancf"traceless) are defined from link-variables as

Au#) = 5= [Up(e) ~ U @)] ~ T [Up(a) — U )]

minimization of gluon-field fluctuation justifies expansion by lattice spacing a.




Gluon Propagator in Landau Gauge Iin Lattice QCD

Gluon Propagator is defined by Two-point function,

Dy (z,y) = (A} (2)A, (v)) = Dy (z — y)

In Laudau gauge, Lorentz and Color Structure of Gluon Propagator is simple.

We only have to consider
Scalar Combination of Gluon Propagator,

1 LR 1 i {1
as a function of Four-dlmensmnal Euclldean space-time distance,

= |z| = (z,z,)1?

We mainly investigate Functional Form of

Coordinate-Space Gluon Propagator in Landau Gauge
In Lattice QCD, since coordinate-space variable is
more directly obtained in Lattice QCD.




Calculation Condition of Lattice QCD for Gluon Propagator

Condition of our Lattice QCD calculation:
- guenched level
- standard plaquette action
- lattice spacing: a = 0.1~0.19fm (B =5.7 ~ 6.0)
- various lattice volume

TABLE [. The lattice parameter 3. lattice size, and the gauge-
configuration number N, . The corresponding lattice spacing a
and the lattice volume in the physical unit are added. The lattice
spacing a 1s determined so as to reproduce the string tension

Jo = 427 MeV.

S Lattice size a |[fm] Volume [fm?] N .onf
5.7 163 x 32 0.186 2.976° X 5.952 50
5.8 203 X 32 0.152 3.040° X 4.864 40

6.0 323 % 32 0.104 3.328% % 3.328 30




Coordinate Gluon Propagator in Landau Gauge in Lattice QCD
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FIG. 1. Lalllus QCD results of the scalar-type gluon propaga-
tor D(r) = 3.0_ 121 (A% (x)A%(0))/24 as the function of the

four-dimensional Euclidean distance r = (x,x,)"% in the

Landau gauge at 8 = 5.7, 5.8, and 6.0.
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Comparison with Massive Propagator

To analyze gluon propagator, we first consider free massive-vector
propagator form, using Stueckerberg form Lagrangian in Euclidean metric

s 1 i a2 1 a Aa 1 a
= 1 (3 A 3,,,,A#) §m2‘4;¢‘4g — % (3 A )

rd

(a0 = 0 corresponds to Landau gauge.)

For free massive field, 4-dim. Euclidean Coordinate-space
Propagator is described with modified Bessel function

ddp —ipT T ]- m il 1
D(.r):f(QW)ie P D(?) = -y K (mr) | D) = =D (p) = —

[For large r, D(r ) behaves as D(r) ~ r~3/2e=™" K (mr) ~ [T —mr J

2mr

To estimate effective gluon mass, we compare lattice QCD data

with modified Bessel function, | Dy () = A?Kl(m-r)




Coordinate Gluon Propagator v.s. Massive Propagator
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A typical example of the fit analysis of the lattice gluon

propagator D(r) with the fit function D, (r) of the massive-
vector propagator denoted by the dashed line. The fit i1s done for
the lattice data at 8 = 6.0 in the fit range of r = 0.6-1.0 fm.

In infrared region of r = 0.6 ~1.0fm, lattice data seem to be reproduced
by massive form with gluon mass m about 500MeV. But, massive form
cannot describe Gluon Propagator in whole region of r = 0.1 ~ 1.0fm.




Effective Mass Plot of Gluons
and
Zero-spatial-momentum Propagator

We investigate the Effective Mass Plot of Gluons

Meg(t) = In{Do(t)/Do(t + 1)}

defined from zero-spatial-momentum gluon propagator Dy(t )

Do(t) = 242 A (%,1) A% (0,0)) ZD(r)

In the actual lattice calculation, we use wall-to-wall correlator to improve statistics.
In numerical analysis, we take account of temporal periodicity used in lattice QCD.




Effective Mass Plot of Gluons in Landau Gauge
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FIG. 4. The effective mass M_g(f) of gluons in the Landau
gauge in lattice QCD at 8 = 6.0, 1.e., a = 0.104 fm.

Gluon effective mass M (t) is estimated about 500MeV.
Note that Gluon Effective Mass M (1) is Increasing Function of
time-variable t, unlike hadron or color-singlet case.

This tendency has been indicated by many previous lattice studies.




Function Form Analysis of Landau-Gauge Gluon Propagator

Coordinate-space Landau-gauge Gluon Propagator
IS well described with

Four-dimensional Yukawa-type function
In the region of r = 0.1~1.0fm.

1 ;
D(r) = —D(r) = Ae ™

o 24 FLH T

with |m =~ 600MeV| A=0.16

for 1= (zaza)/? =01~ 1.0fm
Four-dimensional Euclidean space-time distance

m : Yukawa-damping mass parameter
A : a dimensionless parameter




Yukawa-type Function of Landau-Gauge Gluon Propagator
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For the whole region of r = 0.1~1.0fm, Coordinate-space
Landau-gauge Gluon Propagator is fairly well described with
Yukawa-type function in Four-dimensional Euclidean space-time.




Function Form of Landau-Gauge Gluon Propagator

Four-dimensional Euclidean Yukawa-function Dy .ua(r )
corresponds to a new-type propagator,

Am? Am
(p? + m2)3/2

-E’Yukawa{pzj = /d‘iIEiP-TDYukﬂ.wa(T} —

Momentum-space Landau-gauge Gluon Propagator is well
described with the new-type propagator corresponding to
Four-dimensional Yukawa-type function

In the region of p = 0.5 ~ 3GeV.

1 - A2 Am
D(p?) = 5= D% (?) = S

24 P?.U

[p?—l—m

with m =~ 600MeV A =0.16 (the same values)
for 0.5GeV=p=3GeV
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FIG. 8. The Yukawa-type propagator in the momentum space,
i.e.., Dygawa(P?) = 4m2Am(p?* + m?)=3/2 (solid line) with m =
0.624 GeV and A = 0.162, the same values used in Fig. 7. The
horizontal axis is p = (p,p,)/?. The symbols denote the
lattice-QCD data of the scalar-type gluon propagator D(p?) in
the Landau gauge at 8 = 6.0, where the momentum is defined as
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Yukawa-damping
mass parameter

m =~ 600MeV

m = 0.624 GeV
A=0.162

(same values as before)

This agreement is not so
trivial because there are
some deviations between
the actual gluon propagator
and Yukawa-type function
in UV and Deep-IR regions.

Momentum-space Landau-gauge Gluon Propagator is also well
described with 4-dim Fourier transformation of Yukawa function.




Yukawa-type Gluon Propagator for Landau-Gauge Gluons

Landau-gauge Gluon Propagator is well described with
Four-dimensional Yukawa-type function for r = 0.1~1.0fm.

coordinate space momentum space
]_ aa T T = 9 1 o 2 4?1-2;4?71
D(?‘) — ﬁD”#(T) — A?E D(p ): ﬂﬂpp[p ]: (pg_l_mg}gfg
for = (Taza)? = 0.1 ~ 1.0fm for 0.5GeV < p=3GeV

4-dim. Euclidean distance

with |m =~ 600MeV| A =0.16

This Yukawa-type propagator is an approximate function for
Infrared/intermediate region relevant for quark-hadron physics.
Such an Analytical form of Gluon Propagator would be useful
for Nonperturbative Analysis of QCD phenomena.




Zero-spatial-momentum propagator for Yukawa-type gluon propagator

For Yukawa-type propagator, zero-momentum propagator
D,(t) Is expressed with modified Bessel function K,(mt)

Dy(t) = ATAtK, (mt)

Do(t —242,4“*(* )AL(0,0)) =) D(r)

oe 1
— 471Am dr r°
/n vt 412

— AmAm / drmg—mr
o T - _
= 4?1':51??1ﬁ2 f drv/ 72 — 1~ T
1

= 4m xilmt?—ffl (mt) = 4m ALK, (mt),
mt

Derivation:

E—m =+t

This is continuum formalism with infinite spatial volume.
For the actual comparison with lattice QCD data,

we take account of temporal periodicity, used in lattice calculations.

Do(t) = 4mA[tK(mt) + (Nt — 1) Ki(m(Ne — t))]




Zero-spatial-momentum Gluon Propagator
Lattice QCD data and Analytical result derived from Yukawa-type propagator

Dy(t) = 4w AtK(mt)| with temporal periodicity
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0.624 GeV and A = 0.162, the same values in Fig. 7.
Yukawa-type propagator.



Effective mass plot for Yukawa-type Gluon Propagator

For Yukawa-type propagator, Effective Mass Plot of Gluons
IS also expressed with modified Bessel function K,(mt).

Do() _, tK 1 (mt)
"Dot+ 1) G+ DEi(m(t+1)

This is continuum formalism with infinite spatial volume.
In actual comparison, we take account of temporal periodicity used in lattice QCD.

For large t, the effective mass is much simplified as

1 1 1
Meg(t) =m — 5 In (]_ + E) ~ M — on

Mg (t) =1

Therefore, mass parameter m =~ 600MeV has a definite
physical meaning of Effective Gluon Mass in Infrared region.

The value m =~ 600MeV for infrared effective gluon mass
Is almost the same as phenomenologically conjectured value.

[J.M. Cornwall, Phys. Rev. D26, 1453 (1982).]
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FIG. 10. The effective mass M g(r) of gluons in the Landau
gauge. The symbols denote the lattice-QCD data at 8 = 6.0. and
the solid line denotes the theoretical curve of Eq. (55) derived
from the Yukawa-type propagator with m = 0.624 GeV, the
same value used in Fig. 7.

A good agreement between lattice QCD data and
the theoretical curve derived from Yukawa-type propagator




Spectral Function of the Gluon field derived from Yukawa-type propagator

From analytical expression of zero-momentum propagator
D,(t), we can derive Spectral Function p(w) of Gluon field,
associated with Yukawa-type Gluon propagator.

(For simplicity, we take continuum formalism with infinite space-time.)

Relation between spectral function p(w) and
temporal propagator Dy(t) is given by Laplace transformation

Dy(t) = A dw p(w) e "]

When the spectral function is given by a d-function such as
p(w) ~ d(w — wy), which corresponds to a single mass spectrum,
one finds a familiar exponential damping correlator D(t) ~exp(-wy t).

For the physical state like hadrons, spectral function p(w) gives
probability factor, and is non-negative definite in the whole region of w.



Spectral Function of the Gluon field derived from Yukawa-type propagator

We can derive analytical expression of
Spectral Function p(w) of Gluon field by
Inverse Laplace transformation of temporal propagator Dy(t).

1 c+100
plw) = — dt e“" Dq(t)

2T J o ine

1 c+i100
= 5 dt et 4w AtK(mt)
Mt Je—ioo
1 u‘:‘r—|—iDu::3 L, 4 A
m dfr e t ;—Eﬁ‘r}{] (fr}

cf —100

w=wm, t =mt c'=mc




Spectral Function of the Gluon field derived from Yukawa-type propagator

Using an integral expression of modified Bessel function,

w

— , —wt
Ki(t) = /1 dw e 1

_ oy e wt -~ -
— [j duJ [ { 5 ]_}1K26I(w 1)

we obtain formula of Inverse Laplace transformation of
modified Bessel function:

1 c+100

2mi f . dt e Ki(t) = (w2 —1)1/2 flw —1)
By differentiating this by w, we find the following formula
1 c+ioc
- dt e“t tK(t)
21 C—100
1 W |
— o 1) Olw—1)+ . l)lﬂﬁ(m —1)
1 1
— P 1}3K29(w — 1)+ o 1]}1K36(M —1)




Spectral Function of the Gluon field derived from Yukawa-type propagator

Then, we obtain Spectral Function p(®) as

1 etice L A7A
P[W)ZE - dﬁ’ftm—gﬂl()
4 A/ m? , 4 A/m? ,
= — fw — 1 O(w —1
(@2 —1)3/2 (w ) + 2w —1)1172 (w )
A7 Am filﬁ'r}l/ V2m
— _(wg_mg)sﬁﬂ(w—m)—l— o _m)i d(w —m).

Eventually, we derive Spectral Function p(w) of Gluon field,
associated with 4-dim Yukawa-type propagator:

A Am A A \/ﬁ
plw) = — (w2 — m2)3/2 O(w —m) + (& _2! m)1/2 O(w —m)

by a suitable regularization,

For more rigorous derivation, we avoid the singularity at ®= m
T. Iritani, H.S., H. lida, Phys. Rev. D80 (2009) 114505 (20 pages).




Spectral Function of Gluon Field obtained from Yukawa-type Propagator
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FIG. I1. The spectral function p(w) of the gluon field. asso-
ciated with the Yukawa-type propagator. The unit is normalized
by the mass parameter m = 600 MeV. As Eq. (67) indicates,
plw) shows anomalous behaviors: it has a positive d-functional T Iritani. H.S. H. lida
peak with the residue of +o0 at @ = m(+¢), and takes negative ] oo T :

values for all of the region of @ = m. PhyS. Rev. D80 (2009)




Spectral Function of Gluon Field obtained from Yukawa-type Propagator
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Spectral function and Effective Mass

Proof | Effective mass is defined by temporal propagator D(t )
Mg (t) = In{Do(t)/Do(t + 1)}
In spectral representation, temporal propagator is expressed as

Do(t) =) ciem™!
d | d? _mii (Zt Cie—mit)(zi Ei?ﬁgﬁ—ﬂtit) o (Zz Ci'miﬂ_ﬂht)g
Eﬂf(t} = —E In (; C;€ t) = — (ZI Cie—m:‘f)z
If all the spectral weights are non-negative (or non-positive),
time-derivative of effective mass M (t) Is always
non-positive, due to Cauchy-Schwartz inequality,
and effective mass M4 (t) must be a decreasing function of
time-variable t. This holds for all the hadronic correlators.

Hence, to describe the increasing behavior of effective mass
M.« (t) of gluons, the Spectral Function of Gluon must include

Both Positive and Negative parts.




Spectral function and Effective Mass
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Gluon Spectral Function p(w) including positive and negative
parts can realize increasing effective mass M_«(t) of gluons.

T. Iritani, H.S., H. lida,
Phys. Rev. D80 (2009).



Possible Effective Dimensional Reduction in QCD

Next, we consider a possible physical meaning of
4-dimensional Yukawa-type propagation of gluons.

Landau-gauge Gluon Propagator is well described with
Four-dimensional Yukawa-type function for r = 0.1~1.0fm.

D(r) = EDEE‘Z (r) = A?e_””‘" r =z = (zpz,)

Here, Yukawa function e™/r is a natural form in 3-dim space,
since it is obtained by 3-dim Fourier transformation of ordinary
massive propagator (p2 + m2).

In fact, Yukawa-type propagator has “3-dimensional” property.

In this sense, as an interesting possibility, we propose to
interpret this Yukawa-type behavior of Gluon Propagation as
an “effective reduction of space-time dimension”.




Effective Dimensional Reduction in Stochastic System
~ Parisi-Sourlas mechanism

Such a “dimensional reduction” sometimes occurs in
stochastic systems, as Parisi and Sourlas pointed out for
spin system in a random magnetic field.

[G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744-745 (1979).]

On Infrared Dominant diagrams, D-dimensional system
coupled to Gaussian-Random external field is equivalent to
(D - 2)-dimensional system without the external field.

For system coupled to Gaussian-random external source,
space-time dimension of the theory seems to be reduced
by two, owing to hidden supersymmetry.




Outline of Parisi-Sourlas mechanism

L(p) = %(@co)z +V (g) = —%mwvw)

N In the presence of Gaussian random external field

1
Lss[D] = _E(DASS(D +V (D)

SUSY structure
SUSY Iinvariant

D(x,60) = p(X) + O (X) + 7 (X)8 + O0c(x)| Superfield formalism

L..[®]|:0—dependent part is a function of X* +60

Dimensional
Reduction

m jdedé? f(x*+606) :di‘zx f(x?)

[d°xdo L [@(x,0)] = [d° X Lys[p(x)]

1

(d6=dade)
Original theory In

_ jd sz(—§¢A¢+V(¢)j _ _[d P-2y (p)| 2D-Reduced space-time

without external field




Possible Dimensional Reduction in QCD ~ Parisi-Sourlas mechanism

We note that Gluon propagation in QCD vacuum resembles
the situation of system coupled to stochastic external field.

In fact, as is indicated by Large Positive Gluon Condensate
In Minkowski space,

20 (H?-E2)=(200-300MeV)* >0
T

% (GG =

uv=—a
T

= QCD vacuum is filled with Color-Magnetic field,
which is considered to be highly random at infrared scale.

Since gluons interact each other, propagating gluon is violently
scattered by other gluon fields randomly condensed
In QCD vacuum at infrared scale.

Propagating Gluon

Color-Magnetic fields (Copenhagen vacuum, vortex condensed vacuum)
Schematic figure of Gluon Propagation in Quasi-Random Color-Magnetic field




Color Magnetic Instability of QCD~ Savvidy vacuum

G.K.Savvidy (1977):

Energy density ¢(H) of SU(2) Yang-Mills theory in the
presence of constant color-magnetic field H at 1 loop-level:

#(H)=5(0) = H + 11;3:) I i'j S ()

Minimum 0 Re{s(H)} = H_|_1lg H(| gH+2j 0 L /

condition gH 24772 2 W

Y7

QCD has Color Magnetic Instability, and there occurs
Spontaneous Generation of Color Magnetic field.
H#0 ie. (G,G")>0




Color Magnetic Instability of QCD ~ Copenhagen vacuum

Ambjorn-Olesen NPB170 (1980) Ambjorn-Olesen solution:
solution of 1 loop-level

effective action of QCD

Color Magnetic Instability of QCD
— Inhomogeneous Complicated

system of Color Magnetic field
~ Copenhagen vacuum

To restore Lorentz symmetry,
Domain Structure appears
In QCD vacuum at macro scale
—>Color Magnetic field is Randomly
oriented at infrared scale

> IR

color-magnetic fields




Possible Dimensional Reduction in QCD ~ Parisi-Sourlas mechanism

Propagating Gluon

Color-Magnetic fields (Copenhagen vacuum, vortex condensed vacuum)
Schematic figure of Gluon Propagation in Quasi-Random Color-Magnetic field

As a generalization of the Parisi-Sourlas mechanism, we
conjecture that Infrared Structure of a theory in the presence of
Quasi-Random external field in Higher-dimensional space-time
has a similarity to the theory without the external field in
Lower-dimensional space-time.

From this viewpoint, Yukawa behavior of Gluon Propagation
may indicate an “Effective Reduction of space-time Dimension”
by one, due to Stochastic interaction between

Propagating Gluon and other Infrared-Random Gluon fields
condensed in the QCD vacuum.




Summary and Concluding Remarks

B=60.32>x32 i |
Landau-gauge Gluon Propagator | _ ‘0'1;' E:EE%E% e
Duu (X) is well described by g o
Yukawa-type function e ™/r with |2}
m = 600MeV for r=0.1~1.0 fm .
in 4-dim. Euclidean space-time. 10“5 T T
Z 1] .
From Yukawa-type propagator, i " .
we analytically derive -
Gluon Spectral Function p(w) 51 I |
positive §-functional peak and -
negative continuous part T _
%0 | > 3 4 s
® [m]

Reference: T. Iritani, H. S, H. lida, Phys. Rev. D80 (2009) 114505 (20 pages),
“Gluon-propagator functional form in the Landau gauge in SU(3) lattice QCD:
Yukawa-type gluon propagator and anomalous gluon spectral function”.






Correction from Deep IR region
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FIG. 13. The infrared behavior of the gluon propagator D( ).
The triangle symbols denote recent huge-volume lattice data
taken from Ref. [32]. The solid line denotes the Yukawa-type
propagator ﬁymm(f}z), and the dashed line the deep-IR-
corrected propagator DR (p?) with pyp = 0.45 GeV.

I I I I
B=6.0,32°x32 —e=—i
10" 1 = Dy ukawa(r)
3 IRcorr E
- Dyukawa(f) 7
- L
Z
2 2
c 0%
8 :
107 F
C |
0 0.2 04 0.6 0.8 1
r [fm]

FIG. 14. The Yukawa-type propagator Dy ...(r) (solid line),
and deep-IR-corrected propagator D¥£% (r) (dashed line), to-
gether with the lattice data. The difference between them 1s fairly
small in the IR/IM region of r = 0.1-1.0 fm.

In Deep IR region, there is some deviation between huge-volume
lattice data and Yukawa function. But, correction from Deep IR region
Is found to be very small in the region of 0.1fm <r < 1fm.




Momentum Gluon Propagator in Landau Gauge in Lattice QCD
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This lattice QCD result is
almost the same as those
of previous lattice studies.

107" F
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FIG. 2. Lattice-QCD results of the scalar-type gluon propaga-
tor D(p?) = ¥ .e”*D(r) plotted against p = (p,mu}u)UZ with
the momentum p, = %sin(%’i). in the Landau gauge at B =
5.7, 5.8, and 6.0. We renormalize the propagator to satisfy the
renormalize condition D(pz)lpzzﬁz = 1/u? at the scale u =
4 GeV. The dash-dotted line denotes the tree-level massless

5
propagator, 1/p?.

The Gluon Propagator
almost coincides with
Perturbative Propagator
above 3GeV.




Function Form Analysis of Landau-Gauge Gluon Propagator
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FIG. 6. The ratio of the lattice-QCD data D4 (r) at 8 = 6.0 to
the fit functions Dy, (7). Dyykawalr), and Dgpoe(r) on the scalar-
type gluon propagator, i.e.. Dpy/Dovee: P/ Dyvukaws. and
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