Graphene

From materials science to particle physics

Joaquín E. Drut

The Ohio State University

28th Lattice Symposium Villasimius, Italy, June 2010.

Colleagues

Timo A. Lähde, Lauri Suoranta, Eero Tölö Aalto University, Finland

Kyle Wendt The Ohio State University

Timour Ten University of Illinois

Plan

Graphene

- What is it? Why is it interesting?
- What do experiments say?
- What can we say about it with lattice methods?

Summary & future work

From QCD to condensed matter... and back!

An allotrope of C

An allotrope of C

- An allotrope of C
- 2D hexagonal structure

Orbital hybridization

Two triangular sublattices A, B

- An allotrope of C
- 2D hexagonal structure

Tight-binding hamiltonian

Two triangular sublattices A, B

$$\begin{split} H &= -t \sum_{\langle i,j \rangle, \sigma=\uparrow,\downarrow} \left(a^{\dagger}_{\sigma,i} b_{\sigma,j} + \text{H.c.} \right) \\ &- t' \sum_{\langle \langle i,j \rangle \rangle, \sigma=\uparrow,\downarrow} \left(a^{\dagger}_{\sigma,i} a_{\sigma,j} + b^{\dagger}_{\sigma,i} b_{\sigma,j} + \text{H.c.} \right) \\ &t \simeq 2.8 \text{ eV} \qquad t' \simeq 0.2t \end{split}$$

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

 $E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$

Castro Neto et al, RMP, 81, 109 (2009)

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

$$E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$$

 $2 \times 2 \times 2 = 8$ Fermion d.o.f. $1 \quad 1 \quad Electron spin$ Dirac points Sublattices a.k.a. pseudo-spin

Two 4-component Dirac spinors

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

 $E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$

Two 4-component Dirac spinors, U(4) symmetry

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

 $E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$

Two 4-component Dirac spinors, U(4) symmetry

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

 $E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$

Two 4-component Dirac spinors, U(4) symmetry

...but they move very slowly!
$$v = \frac{3ta}{2} \simeq c/300$$

Strong Coulomb coupling!

$$\alpha_{gr} = \frac{e^2}{4\pi\epsilon_0 v} \simeq 300\alpha \sim 1$$

Maximal for suspended graphene!

- An allotrope of C
- 2D hexagonal structure
- It has 2 Dirac points
 i.e. quasiparticles are relativistic-like...

 $E_{\pm}(\mathbf{k}) = \pm v |\mathbf{k}|$

Two 4-component (weak of $\bar{\psi}\psi$) Dirac spinors, U(4) symmetry $\langle \bar{\psi}\psi \rangle$

(weak coupling) $\langle ar{\psi}\psi
angle = 0$

(strong coupling) $\langle \bar{\psi}\psi
angle
eq 0$

...but they move very slowly! $v = \frac{3ta}{2} \simeq c/300$

Strong Coulomb coupling!

$$\alpha_{gr} = \frac{e^2}{4\pi\epsilon_0 v} \simeq 300\alpha \sim 1$$

Maximal for suspended graphene!

Is suspended graphene gapped?

What do experiments say?

 Very few experiments on suspended graphene

K. I. Bolotin et al., Solid State Comm. 146, 351, (2008)

What do experiments say?

- Very few experiments on suspended graphene
- Annealing techniques are necessary

K. I. Bolotin et al., Solid State Comm. 146, 351, (2008)

What do experiments say?

Can we say anything about this?

Is there an excitonic gap?

Is there an excitonic gap?

• What is the value of N_c ?

D.V Khveschenko, H. Leal, Nucl. Phys. 687, 323 (2004); E.V. Gorbar *et al.*, Phys. Rev. B 66, 045108 (2002).

 $N_c \sim 2.6$

S. Hands, C. Strouthos, Phys. Rev. B 78, 165423 (2008).

 $N_{c} = 4.8(2)$

• What is the value of β_c ?

E.V. Gorbar *et al.*, Phys. Rev. B 66 045108 (2002).

 $\beta_c \thicksim 0.03$

D.V. Khveschenko, Phys. Rev. Lett. 87, 246802 (2001). β_c ~ 0.06

How to answer these questions?

Low-energy action (in detail)

$$S_E = -\int dt \, d^2x \, \left(ar{\psi}_a \gamma^0 \partial_0 \psi_a + v ar{\psi}_a \gamma^i \partial_i \psi_a + i A_0 ar{\psi}_a \gamma^0 \psi_a
ight) \, d^2 \psi_a \,$$

- Fermion sector (Low-energy electrons)
 - 2 Dirac flavors (i.e. two 4-component spinors)

Fermi velocity

$$v \simeq c/300$$

Low-energy action (in detail)

$$S_E = -\int dt \, d^2x \, \left(\bar{\psi}_a \gamma^0 \partial_0 \psi_a + v \bar{\psi}_a \gamma^i \partial_i \psi_a + i A_0 \bar{\psi}_a \gamma^0 \psi_a\right) + \frac{1}{2g^2} \int dt \, d^3x (\partial_i A_0)^2$$

- Fermion sector (Low-energy electrons)
 - 2 Dirac flavors (i.e. two 4-component spinors)

Gauge sector (Coulomb interaction)

Only one component: A₀ living in 3+1 d

Fine structure constant $\alpha_{gr} = \frac{e^2}{4\pi\epsilon_0 v} \simeq 300\alpha \sim 1$ Fermi velocity Inverse Coulomb coupling Strongly coupled! $\beta = \frac{\epsilon_0 v}{e^2}$

Lattice theory

First results: Condensate

Logarithmic derivative R

J. E. Drut and T. A. Lähde, Phys. Rev. Lett **102**, 026802 (2009) Phys. Rev. B **79**, 165425 (2009)

EOS extrapolation

Summary

Is suspended graphene in the gapped phase?

- Velocity renormalization?
- Magnitude of the gap?

J. E. Drut and T. A. Lähde, Phys. Rev. Lett **102**, 026802 (2009) Phys. Rev. B **79**, 165425 (2009)

J. E. Drut, T. A. Lähde, L. J. Suoranta arXiv:1002.1273

Recent and in-progress work

What is the nature of the transition?

Infinite order (Miransky scaling)? X

- Second order ?
- Nhat happens as a function of N_f ? V
- Velocity renormalization (with T. A. Lähde and L. J. Suoranta)
- Magnitude of the gap
 (with T. A. Lähde and E. Tölö)
- Improved actions (with T. A. Lähde and L. J. Suoranta)
- Exciton condensation in bilayers (with T. A. Lähde and A. H. MacDonald)

Gate g Graphene sheets Gate t Gate t Gate t

> from Kharitonov & Efetov, Phys. Rev. B **78**, 241401R (2008)

Phys. Rev. B **79**, 165425 (2009) Phys. Rev. B **79**, 241405(R) (2009)

To be continued...

