Strong coupling expansion Monte Carlo

Ulli Wolff

Humboldt University, Berlin

Lattice 2010, June 19, Villasimius, Sardinia, Italy
(apri 1989) Ulli Wolff
Critical Slowing Down

- The Problem

Alleviations and cures:

- Over-Relaxation
- Multi-Grid
- Percolation-Methods
(Swendsen, Wang)
Left out :
small stepsize methods
\rightarrow try talks on dynamical
fermions
Further reading:
A. Sokal, Lecture Notes "Cours de $3^{\text {time }}$ Cycle de La Physice en Suisse Romance" 1989

Related recent plenaries in this conference series:

- Shailesh Chandrasekharan, Williamsburg 2008
- watched by $\mu_{\text {chem }} \neq 0$ community: Philippe de Forcrand, Beijing 2009, Sourendu Gupta, here 2010
Aliases:
- World-line formalism
- Loop (gas) representation
- Simulated all-order strong coupling/hopping parameter expansion

Disclaimers:

- not 'just' a new algorithm, but...
- simulation of a reformulated system, which...
- is not the dual model (despite similarities)

Basic idea, exemplified for good old Ising

Two point function (torus, any D)

$$
\langle\sigma(u) \sigma(v)\rangle=\frac{Z_{2}(u, v)}{Z_{0}}=\frac{\sum_{\{\sigma(x)= \pm 1\}} \mathrm{e}^{-S[\sigma]} \sigma(u) \sigma(v)}{\sum_{\{\sigma(x)= \pm 1\}} \mathrm{e}^{-S[\sigma]}}
$$

with

$$
-S[\sigma]=\beta \sum_{l=\langle x y\rangle} \sigma(x) \sigma(y)
$$

- $Z_{0}, Z_{2}\left(, Z_{4} \ldots\right)$ have expansions in β
- convergent for all β in a finite volume
- this includes $\beta \approx \beta_{c}, \xi \gg 1$
- but: contributions $\sim \beta^{\text {volume }}$ will be important!
- [normal (truncated) s.c.: $V \rightarrow \infty$ term by term in Z_{2} / Z_{0}]

$$
\mathrm{e}^{\beta \sigma(x) \sigma(y)}=\sum_{k=0}^{\infty} \frac{\beta^{k}}{k!} \sigma(x)^{k} \sigma(y)^{k}
$$

$$
\begin{aligned}
& Z_{0}=\sum_{g \in \mathcal{G}_{0}} \beta^{\sum_{l} k(l)} W[k] \\
& \bullet \operatorname{graphs} g \text { with } k(l)=0, \ldots, \infty \\
& \bullet(\operatorname{div} k)(x) \equiv \operatorname{even} \\
& \bullet W[k]=\prod_{l} \frac{1}{k(l)!} \\
& \Rightarrow \beta\langle\sigma \sigma\rangle_{n . n \cdot}=\langle k(l)\rangle_{g \in \mathcal{G}_{0}}=\mathrm{O}(1) \\
& \hline Z_{2}=\sum_{g \in \mathcal{G}_{2 \mid u, v}} \beta^{\sum_{l} k(l)} W[k] \\
&(\operatorname{div} k)(x) \equiv \operatorname{even}+\delta_{x, u}+\delta_{x, v} \\
& \text { • } \quad \text { 'defects' at } u \text { and } v \\
& \text { • } \quad \mathcal{G}_{\left.2\right|_{u, u}}=\mathcal{G}_{0}
\end{aligned}
$$

The break-through of Prokof'ev and Svistunov

- Z_{0} has been simulated as $\sum_{g \in \mathcal{G}_{0}} \ldots$ in ancient history [Berg \& Förster, 1981]
- $k(l) \rightarrow k(l) \pm 1$ on $4 l$ around plaquettes (constraint!)
- additional steps
- not efficient, critical slowing down

P\&S: enlarge the ensemble

$$
\mathcal{Z}=\sum_{g \in \mathcal{G}_{2}} \beta^{\sum_{l} k(l)} W[k]=\sum_{u, v} Z_{2}(u, v) \quad \mathcal{G}_{2}=\cup_{u, v} \mathcal{G}_{\left.2\right|_{u, v}}
$$

- PS 'worm' algorithm works on \mathcal{G}_{2} :
- $\quad k(l) \rightarrow k(l) \pm 1$ on single $l=\langle u x\rangle$ with $u \rightarrow x$
- defect moves, constraint preserved
- (practically) no critical slowing down
- easier to move $\mathcal{G}_{0} \ni g \rightarrow g^{\prime} \in \mathcal{G}_{0}$ by cutting through \mathcal{G}_{2}
- the intermediate configurations are extremely useful:

$$
\langle\sigma(x) \sigma(0)\rangle=\frac{\left\langle\delta_{x, u-v}\right\rangle_{g}}{\left\langle\delta_{u, v}\right\rangle_{g}}, \quad\left\langle\delta_{u, v}\right\rangle_{g}=\chi^{-1}, \quad\langle.\rangle_{g} \equiv\langle.\rangle_{g \in \mathcal{G}_{2}}
$$

- all-x 2-point function $=$ histogram $u-v$ of graphs

A very simple generalization:

$$
\begin{gathered}
\mathcal{Z}=\sum_{g \in \mathcal{G}_{2}} \beta^{\sum_{l}^{k(l)}} W[k] \times \rho^{-1}(u-v) \quad[\rho>0] \\
\langle\sigma(x) \sigma(0)\rangle=\frac{\left\langle\delta_{x, u-v}\right\rangle_{g}}{\left\langle\delta_{u, v}\right\rangle_{g}} \times \rho(x)
\end{gathered}
$$

- use a guess $\rho(x) \approx\langle\sigma(x) \sigma(0)\rangle$
- then $\left\langle\delta_{x, u-v}\right\rangle_{g}:$ guess \rightarrow exact answer
- $\left\langle\delta_{x, u-v}\right\rangle_{g} \approx$ const \Rightarrow all bins $u-v$ get \approx same statistics \Rightarrow signal/noise x-independent!

$\mathrm{O}(N)$ sigma model

$$
Z(u, v)=\left[\prod_{x} \int d^{N} s \delta\left(s^{2}-1\right)\right] \mathrm{e}^{\beta \sum_{l} s(x) \cdot s(y)} s(u) \cdot s(v)
$$

to generate graphs we need:

$$
\begin{gathered}
\int d^{N} s \delta\left(s^{2}-1\right) \mathrm{e}^{j \cdot s}=\sum_{n=0}^{\infty} c[n ; N](j \cdot j)^{n} \longrightarrow c[n ; N] \text { known } \\
\mathcal{Z}=\sum_{g \in \mathcal{G}_{2}} \beta^{\sum_{l}{ }^{k(l)}} W[k ; N] \frac{N^{|g|}}{\mathcal{S}[g]} \times \rho^{-1}(u-v)
\end{gathered}
$$

- lines now paired around sites
- $c[.,$.$] enter into W$
- $|g|=\#$ of closed loops
- $\mathcal{S}[g]$ symmetry factor of g
yes, we can ergodically sample such graphs:
- $\quad g$ stored and updated as (multiply) linked list
- size a priori unknown, no problem: $\sum_{l} k(l)=\mathrm{O}(V) \pm \mathrm{O}(\sqrt{V})$
- also $|g|=\mathrm{O}(V)$
- beside updates $\Delta k(l)= \pm 1$ (with u hopping), we make
- line re-connect-steps at u and v
- 1 iteration $:=V$ steps at $u, v \sim 1$ 'sweep'
- (practically) no slowing down in units 'iterations'
- $\quad N$ may be treated stochastically (I-algo) or exactly (R-algo)
- I: cost/it $\propto L^{D}$, integer N only
- R: cost $/$ it $\propto L^{D+z}$, real $N, z_{\text {eff }} \sim 0.3(D=2, N=3, \xi=7 \ldots 65)$

$\mathrm{CP}(N-1)$

- field: $\varphi(x) \in \mathbb{C}^{N},|\varphi(x)|=1$
- invariant: $\varphi(x) \rightarrow \varphi(x) \mathrm{e}^{i \alpha(x)}$ and global $\operatorname{SU}(N)$
- lattice actions: quartic in φ or explicit $\mathrm{U}(1)$ gauge field expected (and seen): same universality class
- $\mathrm{SU}(N)$ adjoint correlations of $j^{a}(x)=\varphi^{\dagger}(x) \lambda^{a} \varphi(x)$

$$
\begin{aligned}
& \left\langle j^{a}(u) j^{a}(v)\right\rangle=\frac{Z_{2}(u, v)}{Z_{0}} \quad \ldots \ldots \longrightarrow \ldots \ldots \\
& \mathcal{Z}=\sum_{g \in \mathcal{G}_{2}} \beta^{\sum_{l} k(l)} W[k ; N] \frac{N^{|g|}}{\mathcal{S}[g]} \times \rho^{-1}(u-v)
\end{aligned}
$$

- different \mathcal{G}_{2} now (compared to $\mathrm{O}(N)$):
- oriented lines and loops, but
- flux zero through each link

Nienhuis action in the $O(3)$ model

- allow only $g \in \mathcal{G}_{2}$ with $k(l)=0,1$ on all links
- g-simulation: no problem
- equivalent to Nienhuis (first: Domany et al. 1981) action:

$$
Z_{0}=\left[\prod_{x} \int d^{N} s \delta\left(s^{2}-1\right)\right] \prod_{l=\langle x y\rangle}[1+\beta s(x) \cdot s(y)]
$$

- Nienhuis: exactly solved for $D=2, N \leqslant 2$ honeycomb lattice, $\beta \leqslant 1$
- sign problem for $\beta>1$!

$$
\Sigma(2, u, a / L)=\left.m(2 L) 2 L\right|_{m(L) L=u}=\sigma(2, u)+\mathrm{O}\left(a^{2}\right)
$$

$$
\text { this plot: } \beta=1.8 \ldots 3.1
$$

exact continuum result (Balog \& Hegedus, 2004, Bethe Ansatz):

$$
\sigma(2,1.0595)=1.261210 \longleftrightarrow *
$$

Fermions

Triviality of φ^{4}

- Aizenman's rigorous proofs (bounds) for $D>4$ use
- our $g \in \mathcal{G}_{2}$ representation for Ising
- plus: replica and percolation ideas
- Translate into MC estimators for any $D($ incl. $D=4)$
- Result

$$
g_{R}=-\frac{\chi_{4}}{\chi^{2}}\left(m_{R}\right)^{D}=2 z^{D}\langle\mathcal{X}\rangle_{\left(g, g^{\prime}\right) \in \mathcal{G}_{2} \times \mathcal{G}_{2}} \quad \mathcal{X} \in\{0,1\}, z=m_{R} L
$$

- no numerical cancellation for connected χ_{4}
- Lebowitz inequality manifest

Conclusions

- some lattice QFTs can be represented by their all-order $\beta(\kappa)$ expansion (without sign problem! In general?)
- MC sampling possible by locally deforming graphs
- CSD seems a new question: generate large independent equilibrium graphs \leftrightarrow long distance correlated configs
- new opportunities for certain observables (adapted ensemble)
- sign problem can be different for $\sum_{\text {conf }} \cdots$ vs. $\sum_{\text {graphs }} \cdots$ example: bosons with $\mu_{\text {chem }}$ [Endres; Banarjee, Chandrasekharan]
- gauge theory, defects: points \rightarrow loops [\rightarrow talk Tomasz Korzec]
- fermions in $D>2$ (even free!)??

Other contributors (incomplete, 1002 apologies): O.Bär, D.Baumgärtner, Y.Deng, P.DeForcrand, T.M.Garoni, C.Gattringer, W.Janke, T.Korzec, V.Maillart, T.Neuhaus, F.Niedermayer, W.Rath, A.M.J.Schakel, A.D.Sokal, J.W.Cherrington, U.Wenger, U.J.Wiese

