Strong coupling expansion Monte Carlo

Ulli Wolff

Humboldt University, Berlin

Lattice 2010, June 19, Villasimius, Sardinia, Italy

Related recent plenaries in this conference series:

- Shailesh Chandrasekharan, Williamsburg 2008
- watched by $\mu_{\text{chem}} \neq 0$ community: Philippe de Forcrand, Beijing 2009, Sourendu Gupta, here 2010

Aliases:

- World-line formalism
- Loop (gas) representation
- Simulated all-order strong coupling/hopping parameter expansion

Disclaimers:

- not 'just' a new algorithm, but...
- simulation of a reformulated system, which...
- is not the dual model (despite similarities)

Basic idea, exemplified for good old Ising Two point function (torus, any D)

$$\langle \sigma(u)\sigma(v)\rangle = \frac{Z_2(u,v)}{Z_0} = \frac{\sum_{\{\sigma(x)=\pm 1\}} e^{-S[\sigma]}\sigma(u)\sigma(v)}{\sum_{\{\sigma(x)=\pm 1\}} e^{-S[\sigma]}}$$

with

$$-S[\sigma] = \beta \sum_{l = \langle xy \rangle} \sigma(x)\sigma(y)$$

- $Z_0, Z_2(, Z_4...)$ have expansions in β
- convergent for all β in a finite volume
- this includes $\beta \approx \beta_c, \xi \gg 1$
- but: contributions $\sim \beta^{\text{volume}}$ will be important!
- [normal (truncated) s.c.: $V \to \infty$ term by term in Z_2/Z_0]

$$e^{\beta\sigma(x)\sigma(y)} = \sum_{k=0}^{\infty} \frac{\beta^k}{k!} \sigma(x)^k \sigma(y)^k$$

The break-through of Prokof'ev and Svistunov

- Z_0 has been simulated as $\sum_{g \in \mathcal{G}_0} \dots$ in ancient history [Berg & Förster, 1981]
 - $\circ \quad k(l) \to k(l) \pm 1 \text{ on } 4 l \text{ around plaquettes (constraint!)}$
 - \circ additional steps
 - \circ $\;$ not efficient, critical slowing down

P&S: enlarge the ensemble

$$\mathcal{Z} = \sum_{g \in \mathcal{G}_2} \beta^{\sum_l k(l)} W[k] = \sum_{u,v} Z_2(u,v) \qquad \mathcal{G}_2 = \bigcup_{u,v} \mathcal{G}_{2|_{u,v}}$$

• PS 'worm' algorithm works on \mathcal{G}_2 :

- $\circ \quad k(l) \mathop{\rightarrow} k(l) \pm 1 \text{ on single } l = \langle u \, x \, \rangle \text{ with } u \mathop{\rightarrow} x$
- \circ defect moves, constraint preserved
- (practically) no critical slowing down

- easier to move $\mathcal{G}_0 \ni g \to g' \in \mathcal{G}_0$ by cutting through \mathcal{G}_2
- the intermediate configurations are extremely useful:

$$\langle \sigma(x)\sigma(0)\rangle = \frac{\langle \delta_{x,u-v}\rangle_g}{\langle \delta_{u,v}\rangle_g}, \qquad \langle \delta_{u,v}\rangle_g = \chi^{-1}, \quad \langle .\rangle_g \equiv \langle .\rangle_{g\in\mathcal{G}_2}$$

- all-x 2-point function = histogram u v of graphs
- A very simple generalization:

$$\mathcal{Z} = \sum_{g \in \mathcal{G}_2} \beta^{\sum_l k(l)} W[k] \times \rho^{-1}(u-v) \qquad [\rho > 0]$$
$$\langle \sigma(x)\sigma(0) \rangle = \frac{\langle \delta_{x,u-v} \rangle_g}{\langle \delta_{u,v} \rangle_g} \times \rho(x)$$

- use a guess $\rho(x) \approx \langle \sigma(x)\sigma(0) \rangle$
- then $\langle \delta_{x,u-v} \rangle_g$: guess \rightarrow exact answer
- $\langle \delta_{x,u-v} \rangle_g \approx \text{const} \Rightarrow \text{all bins } u v \text{ get} \approx \text{same statistics} \Rightarrow \text{signal/noise } x\text{-independent!}$

O(N) sigma model

$$Z(u,v) = \left[\prod_{x} \int d^{N}s\delta(s^{2}-1)\right] e^{\beta \sum_{l} s(x) \cdot s(y)} s(u) \cdot s(v)$$

to generate graphs we need:

$$\begin{split} \int d^N s \delta(s^2 - 1) e^{j \cdot s} &= \sum_{n=0}^{\infty} c[n; N] \, (j \cdot j)^n \longrightarrow c[n; N] \, \text{known} \\ \mathcal{Z} &= \sum_{g \in \mathcal{G}_2} \beta^{\sum_l k(l)} W[k; N] \, \frac{N^{|g|}}{\mathcal{S}[g]} \times \rho^{-1}(u - v) \end{split}$$

yes, we can ergodically sample such graphs:

- g stored and updated as (multiply) linked list
- size a priori unknown, no problem: $\sum_{l} k(l) = O(V) \pm O(\sqrt{V})$
- also |g| = O(V)
- beside updates $\Delta k(l) = \pm 1$ (with *u* hopping), we make
- line re-connect-steps at u and v
- 1 iteration := V steps at $u, v \sim 1$ 'sweep'
- (practically) no slowing down in units 'iterations'
- N may be treated stochastically (I-algo) or exactly (R-algo)
- I: cost/it $\propto L^D$, integer N only
- **R**: cost/it $\propto L^{D+z}$, real N, $z_{\text{eff}} \sim 0.3 \ (D=2, N=3, \xi=7...65)$

$\operatorname{CP}(N-1)$

- field: $\varphi(x) \in \mathbb{C}^N, |\varphi(x)| = 1$
- invariant: $\varphi(x) \to \varphi(x) e^{i\alpha(x)}$ and global SU(N)
- lattice actions: quartic in φ or explicit U(1) gauge field expected (and seen): same universality class
- SU(N) adjoint correlations of $j^a(x) = \varphi^{\dagger}(x)\lambda^a\varphi(x)$

$$\langle j^a(u)j^a(v)\rangle = \frac{Z_2(u,v)}{Z_0} \qquad \dots \longrightarrow \dots$$

$$\mathcal{Z} = \sum_{g \in \mathcal{G}_2} \beta^{\sum_l k(l)} W[k; N] \frac{N^{|g|}}{\mathcal{S}[g]} \times \rho^{-1}(u - v)$$

- different \mathcal{G}_2 now (compared to O(N)):
 - oriented lines and loops, but
 - flux zero through each link

Nienhuis action in the O(3) model

- allow only $g \in \mathcal{G}_2$ with k(l) = 0, 1 on all links
- g-simulation: no problem
- equivalent to Nienhuis (first: Domany et al. 1981) action:

$$Z_0 = \left[\prod_x \int d^N s \delta(s^2 - 1) \right] \prod_{l = \langle xy \rangle} \left[1 + \beta s(x) \cdot s(y) \right]$$

- Nienhuis: exactly solved for $D = 2, N \leq 2$ honeycomb lattice, $\beta \leq 1$
- sign problem for $\beta > 1!$

$$\Sigma(2, u, a/L) = m(2L)2L|_{m(L)L=u} = \sigma(2, u) + O(a^2)$$

this plot: $\beta = 1.8...3.1$ exact continuum result (Balog & Hegedus, 2004, Bethe Ansatz):

$$\sigma(2, 1.0595) = 1.261210 \longleftrightarrow \ast$$

Fermions

Triviality of φ^4

- Aizenman's rigorous proofs (bounds) for D > 4 use
 - \circ our $g \in \mathcal{G}_2$ representation for Ising
 - plus: replica and percolation ideas
- Translate into MC estimators for any D (incl. D=4)
- Result

$$g_R = -\frac{\chi_4}{\chi^2} (m_R)^D = 2z^D \langle \mathcal{X} \rangle_{(g,g') \in \mathcal{G}_2 \times \mathcal{G}_2} \quad \mathcal{X} \in \{0,1\}, z = m_R L$$

- no numerical cancellation for connected χ_4
- Lebowitz inequality manifest

Conclusions

- some lattice QFTs can be represented by their all-order $\beta(\kappa)$ expansion (without sign problem! In general?)
- MC sampling possible by locally deforming graphs
 - $\circ \quad \textbf{CSD seems a new question: generate large independent} \\ equilibrium graphs \leftrightarrow \textbf{long distance correlated configs} \\ \end{cases}$
- new opportunities for certain observables (adapted ensemble)
- sign problem can be different for $\sum_{\text{conf}} \cdots \text{vs.} \sum_{\text{graphs}} \cdots$ example: bosons with μ_{chem} [Endres; Banarjee, Chandrasekharan]
- gauge theory, defects: points \rightarrow loops [\rightarrow talk Tomasz Korzec]
- fermions in D > 2 (even free!)??

Other contributors (incomplete, 1002 apologies): O.Bär, D.Baumgärtner, Y.Deng, P.DeForcrand, T.M.Garoni, C.Gattringer, W.Janke, T.Korzec, V.Maillart, T.Neuhaus, F.Niedermayer, W.Rath, A.M.J.Schakel, A.D.Sokal, J.W.Cherrington, U.Wenger, U.J.Wiese