B meson spectrum and decay constants from $N_{\rm f} = 2$ simulations

Benoît Blossier for **ALPHA**

Lattice 2010, Villasimius, 14 - 19 June 2010

- Strategy and configurations set up
- B spectrum and b quark mass
- f_B decay constant

Strategy and simulations set up

Extraction of f_B , m_b and $m_{B^*} - m_B$ from lattice computation using Heavy Quark Effective Theory expanded up to 1/m.

$$\mathcal{L}^{\mathrm{HQET},1/\mathrm{m}} = \mathcal{L}^{\mathrm{stat}} + m_{\mathrm{bare}} \mathcal{O}^{\mathrm{c.t.}} - \omega_{\mathrm{kin}} \mathcal{O}^{\mathrm{kin}} - \omega_{\mathrm{spin}} \mathcal{O}^{\mathrm{spin}}$$
$$A_0^{\mathrm{HQET},1/\mathrm{m}} = Z_A^{\mathrm{HQET}} A_0^{\mathrm{stat}} + c_A^{(1)} A_0^{(1)} + c_A^{(2)} A_0^{(2)}$$

Bare parameters of the HQET Lagrangian and currents need to be tuned.

finite a

It is done non perturbatively by imposing in a small volume $L_1 \sim 0.5$ fm several matching conditions between correlators defined in QCD and their HQET counterpart:

Ultraviolet divergences of HQET are absorbed in the ω_k coefficients, determined in the $N_{\rm f} = 2$ Schrödinger Functional set up [talk by N. Garron]

$$m_B = m_{\text{bare}} + E^{\text{stat}} + \omega_{\text{kin}} E^{\text{kin}} + \omega_{\text{spin}} E_{\text{spin}}$$

$$f_B \sqrt{m_B/2} = Z_A^{\text{HQET}} (1 + b_A^{\text{stat}} m_q) p^{\text{stat}} \left(1 + \omega_{\text{kin}} p^{\text{kin}} + \omega_{\text{spin}} p^{\text{spin}} + c_A^{(1)} p^{A^{(1)}} \right)$$

HYP1, $\theta_0 = 0.5$, $(\theta_1, \theta_2) = (0, 0.5)$

β	$L M_Q$	$am_{ m bare}$	$\ln(Z_A^{\mathrm{HQET}})$	$c_A^{(1)}/a$	$\omega_{ m kin}/a$	$\omega_{ m spin}/a$
5.2	13	1.112(23)	-0.169(32)	0.141(78)	0.465(06)	0.687(27)
	15	1.364(26)	-0.176(30)	0.172(74)	0.424(05)	0.614(24)
	18	1.714(29)	-0.187(21)	0.224(50)	0.371(03)	0.487(16)
5.3	13	0.881(20)	-0.142(33)	0.156(84)	0.518(06)	0.776(32)
	15	1.107(22)	-0.148(31)	0.187(79)	0.473(06)	0.693(29)
	18	1.420(25)	-0.159(21)	0.243(54)	0.414(04)	0.549(20)
5.5	13	0.470(16)	-0.105(35)	0.116(0.100)	0.652(08)	1.011(43)
	15	0.654(17)	-0.113(33)	0.160(94)	0.595(08)	0.903(39)
	18	0.907(19)	-0.122(23)	0.237(64)	0.521(05)	0.715(27)

HYP2, $\theta_0 = 0.5$, $(\theta_1, \theta_2) = (0, 0.5)$

β	$L M_Q$	$am_{ m bare}$	$\ln(Z_A^{\mathrm{HQET}})$	$c_{A}^{(1)}/a$	$\omega_{ m kin}/a$	$\omega_{ m spin}/a$
5.2	13	1.132(23)	-0.126(29)	-0.518(73)	0.470(06)	0.854(34)
	15	1.385(26)	-0.121(27)	-0.431(70)	0.429(05)	0.763(30)
	18	1.737(29)	-0.115(19)	-0.305(47)	0.376(04)	0.605(20)
5.3	13	0.898(20)	-0.126(30)	-0.536(79)	0.522(07)	0.937(39)
	15	1.125(22)	-0.120(28)	-0.446(75)	0.476(06)	0.837(35)
	18	1.440(25)	-0.111(20)	-0.314(51)	0.417(04)	0.663(24)
5.5	13	0.479(16)	-0.136(32)	-0.638(96)	0.656(08)	1.160(50)
	15	0.664(17)	-0.128(30)	-0.530(90)	0.599(08)	1.036(44)
	18	0.920(19)	-0.115(21)	-0.370(62)	0.525(05)	0.821(31)

Measurement of HQET matrix elements using configurations ensembles with $N_{\rm f} = 2 O(a)$ improved Wilson-Clover fermions produced by CLS (Berlin, Cern, Madrid, Mainz, Rome, Valencia).

	β	a (fm)	$L^3 \times T$	m_π (MeV)	#	traj. sep.
	5.2	0.08	$32^3 \times 64$	700	110	16
			$32^3 \times 64$	370	160	16
CLS	5.3	0.07	$32^3 \times 64$	550	152	32
based			$32^3 \times 64$	400	600	32
			$48^3 \times 96$	300	192	16
			$48^3 \times 96$	250	350	16
	5.5	0.05	$32^3 \times 64$	430	250	20
			$48^3 \times 96$	430	30	16

Computation of matrices $N \times N$ of static-light correlators $C_{ij}(t)$ (Gaussian smearing, APE-blocking); statistics increased by using stochastic all to all light quark propagators.

Contribution of excited states to correlators efficiently suppressed by solving a Generalised Eigenvalue Problem [C. Michael, '85; M. Lüscher and U. Wolff, '90] [ALPHA, B. B. *et al*, '09]

$$C^{ij}(t) v_n^j(t, t_0) = \lambda_n(t, t_0) C^{ij}(t_0) v_n^j(t, t_0)$$

$$aE_n^{\text{eff}}(t, t_0) = -\ln\left(\frac{\lambda_n(t+a, t_0)}{\lambda_n(t, t_0)}\right)$$

$$Q_n^{\text{eff}}(t, t_0) = \frac{O^i(t) v_n^i(t, t_0)}{\sqrt{v_n^i(t, t_0)C^{ij}(t)v_n^j(t, t_0)}} \left(\frac{\lambda_n(t_0+a, t_0)}{\lambda_n(t_0+2a, t_0)}\right)^{t/2a}$$

Estimate the 1/m corrections in HQET to static energies and matrix elements using GEVP is not an issue; it is enough to determine λ_n^{stat} and v_n^{stat} :

$$E_{n}^{\text{eff}}(t,t_{0}) = E_{n}^{\text{eff,stat}}(t,t_{0}) + \omega E_{n}^{\text{eff,1/m}}(t,t_{0}) + O(\omega^{2})$$

$$aE_{n}^{\text{eff,stat}}(t,t_{0}) = -\ln\left(\frac{\lambda_{n}^{\text{stat}}(t+a,t_{0})}{\lambda_{n}^{\text{stat}}(t,t_{0})}\right)$$

$$E_{n}^{\text{eff,1/m}}(t,t_{0}) = \frac{\lambda_{n}^{1/m}(t,t_{0})}{\lambda_{n}^{\text{stat}}(t,t_{0})} - \frac{\lambda_{n}^{1/m}(t+a,t_{0})}{\lambda_{n}^{\text{stat}}(t+a,t_{0})}$$

$$\frac{\lambda_{n}^{1/m}(t,t_{0})}{\lambda_{n}^{\text{stat}}(t,t_{0})} = v_{n\,i}^{\text{stat}}(t,t_{0}) \left[\frac{C_{ij}^{1/m}(t)}{\lambda_{n}^{\text{stat}}(t,t_{0})} - C_{ij}^{1/m}(t_{0})\right] v_{n\,j}^{\text{stat}}(t,t_{0})$$

B spectrum and **b** quark mass

With our choice of separation in trajectories between 2 measurements, autocorrelation time of static-light correlators seem pretty small.

A comparison with quenched data indicates that the method to extract static energies is still working as far as the statistical uncertainty is concerned.

$$a(N_{\rm f}=2) \sim 0.07 \text{ fm} \quad a(N_{\rm f}=0) \sim 0.06 \text{ fm} \quad N=5 \quad t_0=5a$$

t [fm]

Correction terms in GEVP: $E_n^{\text{eff,stat}}(t, t_0) = E_n^{\text{stat}} + \beta_n^{\text{stat}} e^{-\Delta E_{N+1,n}t}$

The time-range we have chosen to fit the plateaux is safe because the correction terms are found small at $t_0 > 0.3$ fm.

A systematic uncertainty is introduced by extrapolating to the chiral limit. However a larger source of uncertainty comes from the error on r_0/a , needed in the continuum extrapolation. Uncertainty from the scale: $r_0 = 0.475 \pm 0.025$ fm.

From aE^{stat} , $am_{\text{bare}}^{\text{stat}, I}$ and m_B , one can deduce m_b : $\overline{m_b}(m_b)^{\text{stat}} = \underbrace{4.255(25)_{r_0}(50)_{\text{stat+renorm}}(?)_a \text{ GeV}}_{\text{Preliminary}}$ The situation of O(1/m) terms for energies is encouraging.

Continuum limit of $r_0(m_{B^*} - m_B)$ to be checked.

 $r_0(m_{B_s^*} - m_{B_s})_{N_f=0}^{\text{HQET},1/m} = 0.075(8) \text{ [ALPHA, B. B. et al, '10]}$ Finally we obtain $\overline{m_b}(m_b)_{N_f=2}^{\text{HQET},1/m} = \underbrace{4.276(25)_{r_0}(50)_{\text{stat+renorm}}(?)_a \text{ GeV}}_{\text{Preliminary}}$

 $\overline{m_b}(m_b)_{N_f=0}^{\text{HQET},1/m} = 4.320(40)_{r_0}(48) \text{ GeV [M. Della Morte$ *et al* $, '06]}$ $\overline{m_b}(m_b)^{\text{sum rules}} = 4.163(16) \text{ GeV [K. Chetyrkin$ *et al* $, '09]}$

Interesting to compare $\overline{m_b}(m_b)$ measured with the *B* spectrum with its counterpart estimated from the B_s spectrum in a partially quenched set up (need to know κ_s).

f_B decay constant

The GEVP method is working as in the quenched case for the static matrix element.

Chiral extrapolation reliable; with g = 0.497(3) [talk by M. Donnellan] HM χ PT describes rather well our data. To be confirmed by one pion mass more, for instance lighter than 250 MeV.

$$f_B \sqrt{m_B/2} = Z_A^{\mathrm{HQET}} (1 + b_A^{\mathrm{stat}} m_q) p^{\mathrm{stat}} \left(1 + \omega_{\mathrm{kin}} p^{\mathrm{kin}} + \omega_{\mathrm{spin}} p^{\mathrm{spin}} + c_A^{(1)} p^{\mathrm{A}^{(1)}} \right)$$

The situation of O(1/m) terms correction to f_B^{stat} might be more problematic.

Uncertainties come from the chiral extrapolation and in the extraction of the signal itself.

However their contribution to uncertainties on $f_B^{\rm HQET, 1/m}$ drops to \sim 2 %.

We are at the beginning of this analysis. In particular the extrapolation to the continuum limit has to be performed.

Acknowledgments to J. Bulava, M. Della Morte, M. Donnellan, P. Fritzsch, N. Garron, J. Heitger, G. von Hippel, B. Leder, S. Schaefer, H. Simma, R. Sommer, N. Tantalo, F. Virotta