

Exact Calculation of Disconnected Loops

Constantia Alexandrou, Alan O'Cais, Alexei Strelchenko Cyprus Institute Dimitrios Christaras University of Cyprus

- "Past", current and future accelerating coprocessors
- Setup
- Results

CASTOR

GPU Computing

- Technology driven by gaming market
- Huge performance (per €)

Fermi GPU

- Advancement focus on HPC
- ECC GDDR5 Memory
- 512 cores
- Cache hierarchy
- Greatly improved double precision performance

But...

• Cumulative latencies make device to device communication a challenge

MIC Architecture

- Common CPU/co-processor compiler
- Common optimization techniques
- "100"s of threads

MIC Architecture

- Common CPU/co-processor compiler
- Common optimization techniques
- "100"s of threads...thread-based programming model

Tesla

- 30 multiprocessors consisting of a total of 240 cores
- 4GB RAM
- Compute Unified Device Architecture (CUDA)

Lattice Setup

- 16³ X 32 lattice volume, ensemble of 53 configs
- SESAM 2 flavour dynamical lattices
- Pion mass of ~880MeV
- Wilson action
- Stoutlink smeared gaugefields
- Jacobi smearing on quarkfields
- QUDA package for inversions
- ~50000 inversions per timeslice

QUDA Hacking

- Modified memory management
- Dynamic algorithm switching

Lattice size	16^3 * 32							
Solver tolerance	1.00E-10							
Algorithm type:	BiCG	CG	BiCG	CG	BiCG	CG	BiCG	CG
CPU gauge field precision:	D	D	D	D	D	D	D	D
GPU gauge field precision:	D	D	D	D	D	D	D	D
Reconstruct type:	8	8	12	12	8	8	12	12
GPU gauge field sloppy								
precision:	H	Н	H	Н	S	S	S	S
Sloppy reconstruct type:	12	12	12	12	8	8	12	12
CPU spinor precision:	D	D	D	D	D	D	D	D
GPU spinor precision:	D	D	D	D	D	D	D	D
GPU spinor sloppy precision:	н	Н	Н	Н	S	S	S	S
Avr full time, sec.:	2.11	n/a	2.06	n/a	2.42	4.19	2.47	4.36
Avr inv time, sec.:	0.94	n/a	0.87	n/a	1.24	3.01	1.29	3.18
Avr Gflops for inversion (on GPU)	87.51	n/a	93.86	n/a	64.34	70.56	62.12	66.74

CASTOR

CASTOR

Re Tr(Gamma1Gamma3)

Eta Prime at timeslice 2

Eta Prime at timeslice 2

Eta Prime at timeslice 2

Sigma at timeslice 2

Exact inversion is of course not feasible on large (most!) lattices

- Exact inversion is of course not feasible on large (most!) lattices
- Gauge noise is quantity dependent and its size varies significantly

- Exact inversion is of course not feasible on large (most!) lattices
- Gauge noise is quantity dependent and its size varies significantly
- Smearing is an integral part of the operator and can have a large effect on correlated quantities both in terms of the measurement and the quality of the signal estimation

- Exact inversion is of course not feasible on large (most!) lattices
- Gauge noise is quantity dependent and its size varies significantly
- Smearing is an integral part of the operator and can have a large effect on correlated quantities both in terms of the measurement and the quality of the signal estimation
- Spin dilution has significant influence but smearing may wash out the effects of utilising different stochastic methods

The End