Hadron Form Factors at Large Transfer Momentum

Saul D. Cohen

(with Huey-Wen Lin) arXiv:1005.0799

XXVIII International Conference on Lattice Field Theory

S. D. Cohen (Boston University)

Large-Q² Form Factors

Lattice 2010 1 / 19

Outline

Form Factors at High Momentum Transfer

- Experimental results for neutrons available only up to $\approx 4~\text{GeV}^2$
- JLab 12-GeV upgrade should shed some light on things
- Does G_F^p cross zero around 7 GeV²?

Isn't Perturbative QCD Good Enough?

Recent BaBar results for $\gamma^* \gamma \rightarrow \pi^0$

- Disagreement with PQCD over a wide range: 4 GeV² < Q² < 40 GeV²
- An opportunity for lattice QCD

Anisotropic 2+1-Flavor Clover Ensembles

- Anisotropy improves resolution of excited states
- Clover fermion action
- Quenched Ensembles
 - $16^3 \times 64, \xi = 3$
 - $a_t^{-1} \approx 6.0$ GeV ($a_s \approx 0.10$ fm)
 - Wilson gauge action
 - Valence $M_{\pi} \in \{480, 720, 1080\}$ MeV
- 2+1-Flavor Ensembles
 - $16^3 \times 128, \xi = 3.5$
 - $a_t^{-1} \approx 5.6 \text{ GeV} (a_s \approx 0.12 \text{ fm})$
 - RG-improved gauge action
 - $M_{\pi} \in \{450, 580, 875\}$ MeV

Baryon Correlators

•
$$B(x) = \epsilon^{abc} \left[q_1^{aT}(x) C \gamma_5 q_2^b(x) \right] q_1^c(x)$$

• Use various Gaussian smearings at source and sink

- Quenched: $\sigma \in \{0.5, 2.5, 4.5\}$
- 2+1-flavor: $\sigma \in \{0.5, 1.5, 2.5, 3.5, 4.5\}$
- More sophisticated operators may be used

Variational Method

Given a two-point correlator

$$C_{ij}(t) = \langle O_j(t)O_i(0)
angle = \sum_{n=0}^{\infty} Z_{in}^{\dagger} Z_{jn} e^{-E_n t},$$

take the generalized eigenvalues with respect to intermediate time t_0

$$C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}\psi = \lambda(t,t_0)\psi.$$

For sufficiently large $t - t_0$,

$$\lambda_n(t,t_0)=e^{-(t-t_0)E_n}$$

Variational Overlaps

S. D. Cohen (Boston University)

Large-Q² Form Factors

Lattice 2010 8/19

・ロト ・聞 ト ・ ヨト ・ ヨト

Extract from Three-Point Functions

$$\begin{split} \Gamma^{(3),T}_{\mu,AB}(t_i,t,t_f,\vec{p}_i,\vec{p}_f) &= Z_V \sum_n \sum_{n'} f_{n,n'}(p_f,p_i;E_f,E_i;t_i,t,t_f) \\ &\times \sum_{s,s'} T_{\alpha\beta} u_{n'}(\vec{p}_f,s')_\beta \langle \mathcal{N}_{n'}(\vec{p}_f,s') \,|\, \mathcal{V}_{\mu}|\, \mathcal{N}_n(\vec{p}_i,s) \rangle \overline{u}_n(\vec{p}_i,s)_{\alpha} \end{split}$$

$$f = \frac{Z_{Bn'}^* Z_{An}}{4E_f E_i} \sqrt{\frac{2E_f}{E_f + M_i}} e^{-E_f(t_f - t)} e^{-E_i(t - t_i)}$$

S. D. Cohen (Boston University)

Lattice 2010 9 / 19

Simultaneous Fitting

Dirac and Pauli Form Factors

• General Form:

$$\langle N_2 | V_{\mu} | N_1 \rangle (q) = \overline{u}_{N_2}(p') \left[F_1(q^2) \left(\gamma_{\mu} - \frac{q_{\mu}}{q^2} q \right) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{M_{N_1} + M_{N_2}} \right] u_{N_1}(p) e^{-iq \cdot x}$$

Ground-State Only:

$$\langle N | V_{\mu} | N \rangle(q) = \overline{u}_{N}(p') \left[F_{1}(q^{2})\gamma_{\mu} + \sigma_{\mu\nu}q_{\nu}\frac{F_{2}(q^{2})}{2M_{N}} \right] u_{N}(p)e^{-iq\cdot x}$$

Sachs Form Factors

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M_N^2}F_2(Q^2)$$
(1)

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$
(2)

Comparison with Ratio Method

$$\frac{C_{ss}^{(3)}(t_i, t, t_f; p_i, p_f)}{C_{ss}^{(2)}(t_i, t_f; p_f)} \left(\frac{C_{ps}^{(2)}(t, t_f, p_i)C_{ss}^{(2)}(t_i, t, p_f)C_{ps}^{(2)}(t_i, t_f, p_f)}{C_{ps}^{(2)}(t, t_f, p_f)C_{ss}^{(2)}(t_i, t, p_i)C_{ps}^{(2)}(t_i, t_f, p_i)}\right)^{\frac{1}{2}}$$

Sachs Form Factors

Sachs Form Factors

Dynamical Results

Isovector Form Factors

S. D. Cohen (Boston University)

Large-Q² Form Factors

Lattice 2010 15 / 19

Transverse Charge Distribution

To avoid relativistic distortions, we calculate densities in a plane transverse to a direction of infinite boost:

$$\rho(b) = \int_0^\infty \frac{Q \, dQ}{2\pi} J_0(bQ) F_1(Q^2)$$

Transverse Magnetization Distribution

The transverse magnetization is defined with respect to a *B*-field in the \hat{x} direction:

How High Q^2 Is High Enough?

Consider what we would get for the density in the nucleon core if we only had data up to a typical Q^2 of 2 GeV²

Summary

Conclusions

- Method allows extension to higher momentum transfer
- Will extend reach to match future experiments
- Essential for accurately determining densities in the hadronic core

Future Work

- Introduce more sophisticated operators
- Nucleon axial and pion form factors (see H-W Lin's poster)

Bonus Slides

Quenched-Dynamical Fit Comparisons

Bonus Slides

Two-Dimensional Densities Proton

 $F_1(\vec{b})$

Lattice 2010 21 / 19

Bonus Slides

Two-Dimensional Densities Neutron

 $F_1(\vec{b})$

Lattice 2010 22 / 19