Non-perturbative computation of renormalization constants of bilinears operators with 4 dynamical flavours

P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, D. Palao, G.C. Rossi, C. Urbach

Lattice 2010 - Villasimius - June 14, 2010

D. Palao - Villasimius - Lattice $2010 \quad N_{f}=4$ RCs

Outline

(1) Introduction

- Definition of the problem
- Some theory
(2) Strategy
(3) Results

4 Conclusions \& Outlook

The problem

Computing (RI'-MOM) RCs of various operators (e.g. $P, O_{j}^{\Delta F=2}$) for the action used by ETMC in the $2+1+1$ project

Mass independent scheme \Leftrightarrow Extrapolation to zero quark mass

- is crucial for operators with non-zero anomalous dimension
- requires working at renormalized quark masses $\lesssim 100 \mathrm{MeV}$ \&

Due to fixed m_{s} and $m_{c}, 2+1+1$ ensembles are not well suited
\Rightarrow perform dedicated simulations with 4 degenerate light quarks
\Rightarrow compute RI'-MOM RC's in the χ-limit

- yields pure numbers as functions of $(a \times \text { momentum })^{2}$
- scale is set from physical world $(2+1+1)$: eg from f_{π}
- $Z_{\mu}=Z_{P}^{-1}$ and Z_{P} / Z_{S} are relevant for quark masses

$$
\text { D. Palao - Villasimius - Lattice } 2010 \quad N_{f}=4 \mathrm{RCs}
$$

Action and quark mass parameters (I)

For this study we consider the action (see later too):

$$
S_{L}=S_{\text {lwa }}^{\mathrm{YM}}+a^{4} \sum_{x, f} \bar{\chi}_{f}\left[\gamma \cdot \tilde{\nabla}-\frac{a}{2} \nabla^{*} \nabla+m_{0}+i r_{f} \mu_{q} \gamma_{5}\right] \chi_{f}(x)
$$

or, by passing from twisted to physical quark basis via

$$
\begin{gathered}
\chi_{f} \rightarrow q_{f}=\exp \left[\frac{i}{2}\left(\frac{\pi}{2}-\theta_{0 f}\right) \gamma_{5}\right] \chi_{f}, \quad \bar{\chi}_{f} \rightarrow \bar{q}_{f}=\bar{\chi}_{f} \exp \left[\frac{i}{2}\left(\frac{\pi}{2}-\theta_{0 f}\right) \gamma_{5}\right] \\
S_{L}=S_{\text {lwa }}^{\mathrm{YM}}+a^{4} \sum_{x, f} \bar{q}_{f}\left[\gamma \cdot \tilde{\nabla}-i \gamma_{5} e^{i \theta_{0 f} \gamma_{5}}\left(-\frac{a}{2} \nabla^{*} \nabla+m_{\text {cr }}\right)+M_{0}\right] q_{f}(x),
\end{gathered}
$$

with

$$
M_{0}=\sqrt{\left(m_{0}-m_{\mathrm{cr}}\right)^{2}+\mu_{q}^{2}}, \sin \theta_{0 f}=\frac{m_{0}-m_{\mathrm{cr}}}{M_{0}}, \cos \theta_{0 f}=\frac{\mu_{q} r_{f}}{M_{0}}
$$

Action and quark mass parameters (II)

- Renormalized parameters conveniently chosen as

$$
M=Z_{P} \hat{M}=\sqrt{Z_{A}^{2} m_{\mathrm{PCAC}}^{2}+\mu_{q}^{2}}, \quad \tan \theta=\frac{Z_{A} m_{\mathrm{PCAC}}}{\mu_{q}}
$$

- $d=4$ term of Symanzik LEL involves only M, not θ.
- Partially quenched setup (convenient for RC studies)

$$
(M, \theta) \Longrightarrow\left(M_{\text {sea }}, \theta_{\text {sea }} ; M_{\text {val }}, \theta_{\text {val }}\right)
$$

[θ 's referred to $f=1$]

Action and quark mass parameters (III) *

The lattice action before allows to compute RCs relevant for...

- operators made out of quark fields with ETMC $2+1+1$ action, which in an unphysical basis reads

$$
\begin{aligned}
& S_{l w a}^{\mathrm{YM}}+a^{4} \sum_{x}\left(\bar{\chi}_{\ell 1}, \bar{\chi}_{\ell 2}\right)\left[\gamma \cdot \widetilde{\nabla}-\frac{a}{2} \nabla^{*} \nabla+m_{0}+i \mu_{\ell} \gamma_{5} \tau^{3}\right]\binom{\chi_{\ell 1}}{\chi_{\ell 2}}(x) \\
& +a^{4} \sum_{x}\left(\bar{\chi}_{h 1}, \bar{\chi}_{h 2}\right)\left[\gamma \cdot \widetilde{\nabla}-\frac{a}{2} \nabla^{*} \nabla+m_{0}+i \mu_{\sigma} \gamma_{5} \tau^{3}-\mu_{\delta} \tau^{1}\right]\binom{\chi_{h 1}}{\chi_{h 2}}(x)
\end{aligned}
$$

- operators involving Osterwalder-Seiler valence quarks:
S_{L} above with $m_{0}=m_{\text {cr }}, \mu_{q}>0$ (maximal twist)
[Frezzotti-Rossi'04][Herdoiza Lat10-Plenary]

$$
N_{f}=4 \mathrm{RCs}
$$

We consider only bilinears: $\Gamma \Leftrightarrow S, P, V, A, T$
RI'MOM scheme

- $Z_{q}^{-1} \frac{i}{12} \operatorname{Tr}\left[\frac{\not 尸 S_{f}(p)^{-1}}{\tilde{p}^{2}}\right]_{\tilde{p}^{2}=\mu^{2}}=1 \quad$ any $f\left[\right.$ and $\left.r_{f}\right]$
- $Z_{q}^{-1} Z_{O}^{\left(f f^{\prime}\right)} \operatorname{Tr}\left[\Lambda_{\Gamma}^{\left(f f^{\prime}\right)}(p, p) P_{\Gamma}\right]_{\tilde{p}^{2}=\mu^{2}}=1 \quad f \neq f^{\prime}\left[r_{f^{\prime}}=-r_{f}\right]$

We need to compute:

- The quark propagator: $S_{f}(p)=a^{4} \sum_{x} e^{-i p x}\left\langle\chi_{f}(x) \bar{\chi}_{f}(0)\right\rangle$
- the Green function:

$$
G_{\Gamma}^{\left(f f^{\prime}\right)}(p, p)=a^{8} \sum_{x, y} e^{-i p(x-y)}\left\langle\chi_{f}(x)\left(\bar{\chi}_{f} \Gamma \chi_{f^{\prime}}\right)(0) \bar{\chi}_{f^{\prime}}(y)\right\rangle
$$

- and the amputated vertex:

$$
\Lambda_{\Gamma}^{\left(f f^{\prime}\right)}(p, p)=S_{f}^{-1}(p) G_{\Gamma}^{\left(f f^{\prime}\right)}(p, p) S_{f^{\prime}}^{-1}(p)
$$

$$
N_{f}=4 \mathrm{RCs}
$$

Numerical strategy at $N_{f}=4$ "light" sea quarks
Simplicity \& control of $O(a)$ VS no fine-tuning \& reliable $m_{\text {PCAC }}$ Some facts about $a m_{\text {PCAC }}=\frac{\sum_{\bar{x}} a a_{0}\left\langle\left(\bar{\chi}_{f} \gamma_{5} \gamma_{0} \chi_{f^{\prime}}\right)(x)\left(\bar{\chi}_{f} \gamma_{5} \chi_{f}\right)(0)\right\rangle}{2 \sum_{\bar{x}}\left(\left(\bar{\chi}_{f} \gamma_{5} \chi_{f^{\prime}}\right)(x)\left(\bar{\chi}_{f^{\prime}} \gamma_{5} \chi_{f}\right)(0)\right\rangle}$

(a)

(b)

$$
N_{f}=4 \mathrm{RCs}
$$

Numerical strategy at $N_{f}=4$ "light" sea quarks
If $a \mu_{q} \lesssim 0.01$ at $0.08[0.09] f m \Leftrightarrow \beta=1.95[1.90]$

- considerable fine tuning in $1 / 2 \kappa$ is needed to work at maximal twist
- $\sigma_{\text {stat }}\left[a m_{\mathrm{PCAC}}\right]$ difficult to evaluate when $a m_{\mathrm{PCAC}} \ll 0.01$

Various setups still possible:
A) maximal twist, at larger M 's \longrightarrow need some fine tuning work,
B) out of maximal twist, at larger M's remove $O(a)$ effects by $\theta_{\text {val/sea-average }}$
We have chosen B) with $a M \in[0.014,0.033]$

Runs

ensemble	$a \mu_{\text {sea }}$	$a m_{\text {sea }}^{\text {PCAC }}$	$a \mu_{\text {val }}$	$a m_{\text {val }}^{\text {PCAC }}$
1 m	0.0085	-0.041	$[0.0085, \ldots, 0.0298]$	-0.022
1 p	0.0085	+0.042	$[0.0085, \ldots, 0.0298]$	+0.019
3 m	0.0180	-0.016	$[0.0060, \ldots, 0.0298]$	-0.016
3 p	0.0180	+0.015	$[0.0060, \ldots, 0.0298]$	+0.016
2 m	0.0085	-0.021	$[0.0085, \ldots, 0.0298]$	-0.021
2 p	0.0085	+0.019	$[0.0085, \ldots, 0.0298]$	+0.019
4 m	0.0085	-0.015	$[0.0060, \ldots, 0.0298]$	-0.015
4 p	0.0085	+0.015	$[0.0060, \ldots, 0.0298]$	+0.015

O (a) improvement via θ-average
Based on the symmetry of the lattice action S_{L} under

$$
\mathcal{P} \times\left(\theta_{0} \rightarrow-\theta_{0}\right) \times \mathcal{D}_{d} \times\left(M_{0} \rightarrow-M_{0}\right)
$$

one can prove that the $O\left(a^{2 k+1}\right)$ artifacts occurring in the vev of (multi)local operators O that are invariant under $\mathcal{P} \times\left(\theta_{0} \rightarrow-\theta_{0}\right)$

- are quantities that change sign upon sign change of $\theta_{0}($ or $\theta)$
- are absent in θ-averages: $\quad \frac{1}{2}\left[\left.\langle O\rangle\right|_{\hat{M}, \theta}+\left.\langle O\rangle\right|_{\hat{M},-\theta}\right]$

The same holds for form factors invariant under $\mathcal{P} \times\left(\theta_{0} \rightarrow-\theta_{0}\right)$...e.g. for the RC-estimators at all \hat{M} 's (and \tilde{p}^{2} 's in RI-MOM)

In PQ setup: $(M, \theta) \Rightarrow\left(M^{\text {sea }}, \theta^{\text {sea }} ; M^{\text {val }}, \theta^{\text {val }}\right) \quad\left[\theta^{\prime}\right.$'s referred to $\left.f=1\right]$
D. Palao - Villasimius - Lattice $2010 \quad N_{f}=4 \mathrm{RCs}$

Current analysis

On the ensembles $\mathrm{Ep} / \mathrm{m}(\mathrm{E}=1,2, \ldots)$ with $\left(M_{\mathrm{sea}}^{\mathrm{Ep} / \mathrm{m}}, \theta_{\mathrm{sea}}^{\mathrm{Ep} / \mathrm{m}}\right)$ we compute RC-estimators for several ($M_{\text {val }}, \theta_{\text {val }}$)'s and \tilde{p}^{2} 's
so far $0.013 \lesssim a M^{\text {val }} \lesssim 0.033 \& 0.4 \lesssim\left|\theta_{\text {val }}\right| \lesssim 1.2 \quad\left(\theta_{\text {val }} / m_{P C A C}^{\text {val }}>0\right)$
(1) valence chiral limit: via linear fit to the RC-estimator dependence on $\left(M_{\text {val }}^{P S}\right)^{2}$, with term $\sim\left(M_{\text {val }}^{P S}\right)^{-2}$ for $\Gamma=P, S \quad$ [ignoring $\theta^{\text {val }}$-depend; good $\left.\chi^{2}\right]$
(M1) build (with PT-evolution in E_{r}) RC-estimators at ren. scale $1 / a$, i.e.

$$
Z_{\Gamma}\left((a \Lambda)^{-2} ;(a \tilde{p})^{2}\right)=Z_{\Gamma}\left(\tilde{p}^{2} / \Lambda^{2} ;(a \tilde{p})^{2}\right) E_{\Gamma}^{P T}\left(\tilde{p}^{2} \rightarrow a^{-2}\right)
$$

and get $Z_{\Gamma}\left((a \Lambda)^{-2} ; 0\right)$ by extrapolation in $\left.(a \tilde{P})^{2}\right)$
(M2) build RC-estimator at ren. scale $\tilde{p}_{\mathrm{M} 2}^{2} \sim 12.2 \mathrm{GeV}^{2}$ i.e.

$$
z_{\Gamma}\left((a \Lambda)^{-2} ;\left(a \tilde{p}_{\mathrm{M} 2}\right)^{2}\right)=z_{\mathrm{r}}\left(\tilde{p}_{\mathrm{M} 2}^{2} / \Lambda^{2} ;\left(a \tilde{p}_{\mathrm{M} 2}\right)^{2}\right) E_{\mathrm{F}} E_{F}^{F}\left(\tilde{p}_{\mathrm{M} 2}^{2} \rightarrow a^{-2}\right)
$$

and get $Z_{\Gamma}\left((a \Lambda)^{-2} ; 0\right)$ by extrapolation in $\left(a \tilde{p}_{\mathrm{M} 2}\right)^{2}$) (by averaging around $\tilde{p}_{\mathrm{M} 2}^{2}$)
(2) remove residual $O(a)$ artifacts in RCs via θ-average (see below)
(3) sea chiral limit: $\left(M_{\text {sea }}\right)^{2} \rightarrow 0$ taking θ-dependence into account

Some analvsis possible and improvements planned...
θ-dependence in chiral limit extrapolation of RC estimators (I) \star

- $\mathcal{P} \times(\theta \rightarrow-\theta)$ - even form factors [see their expression in physical quark basis]
- yield $Z_{q, \Gamma}$ that are independent of θ in the χ-limit: $M \rightarrow 0$
$\Rightarrow \theta$-dependence $=$ cutoff effect on the M-corrections wrt χ-limit, hence described by the M-dependent terms in Symanzik's LEL

$$
\begin{aligned}
& a L_{5}^{(M)} \Rightarrow a M^{2} \cos \omega[\bar{\psi} \psi], a M^{2} \sin \omega\left[\bar{\psi} i \gamma_{5} \tau^{3} \psi\right], a M \cos \omega L_{4}^{\mathrm{YM}}, a M \cos \omega[\bar{\psi} \gamma \cdot D \psi] \\
& a^{2} L_{6}^{(M)} \Rightarrow a^{2} M[\bar{\psi} i \sigma \cdot F \psi], a^{2} M[\bar{\psi}(-D \cdot D) \psi], a^{2} M^{2} \cos (2 \omega) L_{4}^{\mathrm{YM}}, a^{2} M^{2} \cos (2 \omega)[\bar{\psi} \gamma \cdot D \psi], \ldots
\end{aligned}
$$

$\omega=\frac{\pi}{2}-\theta, \quad \psi=\left(q_{1}, q_{2}\right)$ or $\left(q_{3}, q_{4}\right): \Leftrightarrow$ Sharpe-Wu '04 + off-shell terms kept \& spurion symmetry used

θ-dependence in chiral limit extrapolation of RC estimators (II) ᄎ

θ-averaged $Z_{q, \Gamma}$-estimators are $\mathrm{O}(a)$ improved \Rightarrow admit a Symanzik description where only one insertion of $a^{2} L_{6} \&$ two of $a L_{5}$ appear In particular: θ-dependence at $\mathrm{O}\left(a^{2}\right)$ gets considerably simplified after θ-average

From $\mathcal{P} \times(\theta \rightarrow-\theta)$ symmetry and form $a L_{5}$ and $a^{2} L_{6}$ one finds $Z_{\Gamma}^{\text {est }}-Z_{\Gamma}^{(\chi)}=R_{1} M+R_{2} M^{2}+a^{2} \rho_{3} M \cos (2 \theta)+a^{2} \rho_{4} M^{2} \cos (2 \theta)$ up to corrections of order M^{3} or higher - negligible in our data.
Terms linear in M reflect $x-$ SSB and are suppressed $\sim \Lambda_{Q C D}^{2} / p^{2}$
In our PQ setup (with $M_{\text {val }}, \theta_{\text {val }} \& M_{\text {sea }}, \theta_{\text {sea }}$) and current analysis

- valence χ-limit before θ-average: good fits in terms of $\left(M_{P S}^{\text {val }}\right)^{2}$
- sea χ-limit after θ-average: fit with $R_{2} M_{\text {sea }}^{2}+a^{2} \rho_{4} M_{\text {sea }}^{2} \cos \left(2 \theta_{\text {sea }}\right)$ is very good [tried ansatz with $M^{2} \rightarrow M$, too: fit quality similar, results \sim identical (up to few 0.001)]

The $\left(M_{\mathrm{PS}}^{\mathrm{val}}\right)^{2}$-dependence of RC-estimators @ $(a \tilde{p})^{2}=1.5$

Figure: $4 m, 4 m$ and $2 p$

The \tilde{p}^{2}-dependence of $\mathbf{R C}$-estimators © $M^{\text {val }}=0$

Figure: ensembles 1 m and 2 p

M1: intercept at $\tilde{p}^{2}=0$ of the shown best fit lines
M2: values at $\tilde{p}^{2}=12.2 \mathrm{GeV}^{2}$, here corresponding to $a^{2} \tilde{p}^{2}=1.9$

$$
N_{f}=4 \mathrm{RCs}
$$

The $M^{\text {sea }}$-dependence after θ-average $\left[\mathrm{M} 1 / \mathrm{M} 2\right.$ @ $M^{\mathrm{val}}=0$]

left: M1; right: M2

$$
N_{f}=4 \mathrm{RCs}
$$

First analysis results for RCs $\left[M 1 / M 2 @ M^{\text {sea }}=M^{\text {val }}=0\right]$

VERY PRELIMINARY!

$\mathrm{RC}\left(\mathrm{RI}{ }^{\prime}\right)$	M 1	M 2	Alternative
Z_{A}	$0.761(08)$	$0.771(03)$	OS-tm \ldots
Z_{V}	$0.630(05)$	$0.674(03)$	WI: $0.6120(05)$
$Z_{P}(1 / a)$	$0.438(08)$	$0.496(04)$	-
$Z_{S}(1 / a)$	$0.614(09)$	$0.647(03)$	-
Z_{P} / Z_{S}	$0.716(21)$	$0.767(08)$	OS-tm \ldots
$Z_{T}(1 / a)$	$0.753(07)$	$0.768(03)$	-
$Z_{q}(1 / a)$	$0.767(06)$	$0.813(02)$	-

Conclusions \& outlook

- Very encouraging results at $\beta=1.95 \rightarrow$ workable approach
- Usual \& mild valence quark mass dependence observed
- Mild sea quark mass dependence, in particular after θ-average
- One (two) more $M_{\text {sea }}$ point(s) at $\beta=1.95$ to reduce errors
- Removal of $O\left(a^{2}\right)$ effects at 1-loop PT plus some analysis improvements are planned
- Extend work to other β 's: 2.1 (in progress), 2.0 and 1.9

