Non-perturbative computation of renormalization constants of bilinears operators with 4 dynamical flavours

P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, D. Palao, G.C. Rossi, C. Urbach

Lattice 2010 - Villasimius - June 14, 2010

Outline

- Definition of the problem
- Some theory

2 Strategy

< 同 ▶

Definition of the problem Some theory

The problem

Computing (RI'-MOM) RCs of various operators (e.g. P, $O_j^{\Delta F=2}$) for the action used by ETMC in the 2+1+1 project

Mass independent scheme \Leftrightarrow Extrapolation to zero quark mass

- is crucial for operators with non-zero anomalous dimension
- $\bullet\,$ requires working at renormalized quark masses $\lesssim 100 {\rm MeV}$ &

Due to fixed m_s and m_c , 2+1+1 ensembles are not well suited

- \Rightarrow perform dedicated simulations with 4 degenerate light quarks
- \Rightarrow compute RI'-MOM RC's in the χ -limit
 - yields pure numbers as functions of $(a \times \text{momentum})^2$
 - scale is set from physical world (2+1+1): eg from f_{π}
 - $Z_{\mu} = Z_{P}^{-1}$ and Z_{P}/Z_{S} are relevant for quark masses

Definition of the problem Some theory

Action and quark mass parameters (I)

For this study we consider the action (see later too):

$$S_{L} = S_{Iwa}^{\rm YM} + a^{4} \sum_{x,f} \bar{\chi}_{f} \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} \nabla^{*} \nabla + m_{0} + ir_{f} \mu_{q} \gamma_{5} \right] \chi_{f}(x)$$

or, by passing from twisted to physical quark basis via

$$\chi_f \to q_f = \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]\chi_f , \quad \bar{\chi}_f \to \bar{q}_f = \bar{\chi}_f \exp[\frac{i}{2}(\frac{\pi}{2} - \theta_{0f})\gamma_5]$$

$$S_L = S_{I_{wa}}^{\mathrm{YM}} + a^4 \sum_{x,f} \bar{q}_f \left[\gamma \cdot \widetilde{\nabla} - i\gamma_5 e^{i\theta_{0f}\gamma_5} (-\frac{a}{2}\nabla^* \nabla + m_{\mathrm{cr}}) + M_0 \right] q_f(x) \,,$$

with

$$M_0 = \sqrt{(m_0 - m_{
m cr})^2 + \mu_q^2}, \ \sin \theta_{0f} = rac{m_0 - m_{
m cr}}{M_0}, \ \cos \theta_{0f} = rac{\mu_q r_f}{M_0}$$

Definition of the problem Some theory

Action and quark mass parameters (II)

• Renormalized parameters conveniently chosen as

$$M=Z_P \hat{M}=\sqrt{Z_A^2 m_{
m PCAC}^2+\mu_q^2}\,,~~ an heta=rac{Z_A m_{
m PCAC}}{\mu_q}$$

- d = 4 term of Symanzik LEL involves only M, not θ .
- Partially quenched setup (convenient for RC studies)

$$(M, \theta) \implies (M_{\text{sea}}, \theta_{\text{sea}}; M_{\text{val}}, \theta_{\text{val}})$$

 $[\theta$'s referred to f = 1]

Definition of the problem Some theory

Action and quark mass parameters (III) \star

The lattice action before allows to compute RCs relevant for...

 operators made out of quark fields with ETMC 2 + 1 + 1 action, which in an unphysical basis reads

$$S_{lwa}^{\rm YM} + a^4 \sum_{x} (\bar{\chi}_{\ell 1}, \bar{\chi}_{\ell 2}) \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} \nabla^* \nabla + m_0 + i \mu_{\ell} \gamma_5 \tau^3 \right] \begin{pmatrix} \chi_{\ell 1} \\ \chi_{\ell 2} \end{pmatrix} (x) + a^4 \sum_{x} (\bar{\chi}_{h1}, \bar{\chi}_{h2}) \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} \nabla^* \nabla + m_0 + i \mu_{\sigma} \gamma_5 \tau^3 - \mu_{\delta} \tau^1 \right] \begin{pmatrix} \chi_{h1} \\ \chi_{h2} \end{pmatrix} (x)$$

• operators involving Osterwalder-Seiler valence quarks: S_L above with $m_0 = m_{\rm cr}$, $\mu_q > 0$ (maximal twist)

[Frezzotti-Rossi'04][Herdoiza Lat10-Plenary]

・ロト ・同ト ・ヨト ・ヨト

Definition of the problem Some theory

< □ > < 同 > < 回 >

We consider only bilinears: $\Gamma \Leftrightarrow S, P, V, A, T$

RI'MOM scheme

•
$$Z_q^{-1} \frac{i}{12} \operatorname{Tr} \left[\frac{\tilde{p} S_f(p)^{-1}}{\tilde{p}^2} \right]_{\tilde{p}^2 = \mu^2} = 1$$
 any f [and r_f]
• $Z_q^{-1} Z_O^{(ff')} \operatorname{Tr} \left[\Lambda_{\Gamma}^{(ff')}(p,p) P_{\Gamma} \right]_{\tilde{p}^2 = \mu^2} = 1$ $f \neq f' \ [r_{f'} = -r_f]$

We need to compute:

- The quark propagator: $S_f(p) = a^4 \sum_x e^{-ipx} \langle \chi_f(x) \bar{\chi_f}(0) \rangle$
- the Green function: $G_{\Gamma}^{(ff')}(p,p) = a^8 \sum_{x,y} e^{-ip(x-y)} \langle \chi_f(x)(\bar{\chi}_f \Gamma \chi_{f'})(0) \bar{\chi}_{f'}(y) \rangle$
- and the amputated vertex: $\Lambda_{\Gamma}^{(ff')}(p,p) = S_{f}^{-1}(p)G_{\Gamma}^{(ff')}(p,p)S_{f'}^{-1}(p)$

Numerical strategy at $N_f = 4$ "light" sea quarks Simplicity & control of O(a) VS no fine-tuning & reliable m_{PCAC} Some facts about $am_{PCAC} = \frac{\sum_{\vec{x}} a\partial_0 \langle (\vec{x}_f \gamma_5 \gamma_0 \chi_{f'})(x) (\vec{x}_{f'} \gamma_5 \chi_f)(0) \rangle}{2 \sum_{\vec{x}} \langle (\vec{x}_f \gamma_5 \chi_{f'})(x) (\vec{x}_{f'} \gamma_5 \chi_f)(0) \rangle}$

Numerical strategy at $N_f = 4$ "light" sea quarks

If $a\mu_q \lesssim 0.01$ at 0.08[0.09] fm $\Leftrightarrow \beta = 1.95[1.90]$

 \bullet considerable fine tuning in $1/2\kappa$ is needed to work at maximal twist

• $\sigma_{\rm stat}[am_{\rm PCAC}]$ difficult to evaluate when $am_{\rm PCAC}\ll 0.01$ Various setups still possible:

A) maximal twist, at larger M's \longrightarrow need some fine tuning work,

B) out of maximal twist, at larger M's \longrightarrow remove O(a) effects by

 $heta_{\mathrm{val/sea}}$ -average

We have chosen B) with $aM \in [0.014, 0.033]$

Runs

ensemble	$\pmb{a}\mu_{ ext{sea}}$	$\mathit{am}_{\mathrm{sea}}^{\mathrm{PCAC}}$	$m{a}\mu_{ m val}$	$\mathit{am}_{\mathrm{val}}^{\mathrm{PCAC}}$
1m	0.0085	-0.041	[0.0085,, 0.0298]	-0.022
1p	0.0085	+0.042	[0.0085,, 0.0298]	+0.019
Зm	0.0180	-0.016	[0.0060,, 0.0298]	-0.016
Зр	0.0180	+0.015	[0.0060,, 0.0298]	+0.016
2m	0.0085	-0.021	[0.0085,, 0.0298]	-0.021
2p	0.0085	+0.019	[0.0085,, 0.0298]	+0.019
4m	0.0085	-0.015	[0.0060,, 0.0298]	-0.015
4p	0.0085	+0.015	[0.0060,, 0.0298]	+0.015

æ

O(a) improvement via θ -average

Based on the symmetry of the lattice action S_L under

 $\mathcal{P} imes (heta_0 o - heta_0) imes \mathcal{D}_d imes (M_0 o -M_0)$

one can prove that the $O(a^{2k+1})$ artifacts occurring in the vev of (multi)local operators O that are invariant under $\mathcal{P} \times (\theta_0 \to -\theta_0)$

- are quantities that change sign upon sign change of θ_0 (or θ)
- are absent in θ -averages: $\frac{1}{2} \langle O \rangle |_{\hat{M},\theta} + \langle O \rangle |_{\hat{M},-\theta}$

The same holds for form factors invariant under $\mathcal{P} \times (\theta_0 \to -\theta_0)$...e.g. for the RC-estimators at all \hat{M} 's (and \tilde{p}^2 's in RI-MOM)

3

In PQ setup: $(M, \theta) \Rightarrow (M^{\text{sea}}, \theta^{\text{sea}}; M^{\text{val}}, \theta^{\text{val}})$ [θ 's referred to f = 1]

Current analysis

On the ensembles Ep/m (E=1,2,...) with $(M_{\text{sea}}^{\text{Ep/m}}, \theta_{\text{sea}}^{\text{Ep/m}})$ we compute RC-estimators for several $(M_{\text{val}}, \theta_{\text{val}})$'s and \tilde{p}^2 's so far $0.013 \leq a M^{\text{val}} \leq 0.033 \& 0.4 \leq |\theta_{\text{val}}| \leq 1.2 \quad (\theta_{\text{val}}/m_{\text{PCAC}}^{\text{val}} > 0)$

- valence chiral limit: via linear fit to the RC-estimator dependence on $(M_{\rm val}^{PS})^2$, with term $\sim (M_{\rm val}^{PS})^{-2}$ for $\Gamma = P, S$ [ignoring $\theta^{\rm val}$ -depend; good χ^2]
- (M1) build (with PT-evolution in E_{Γ}) RC-estimators at ren. scale 1/a, i.e. $Z_{\Gamma}((a\Lambda)^{-2}; (a\bar{p})^2) = Z_{\Gamma}(\bar{p}^2/\Lambda^2; (a\bar{p})^2) E_{\Gamma}^{PT}(\bar{p}^2 \rightarrow a^{-2})$ and get $Z_{\Gamma}((a\Lambda)^{-2}; 0)$ by extrapolation in $(a\bar{p})^2$)
- (M2) build RC-estimator at ren. scale $\tilde{p}_{M2}^2 \sim 12.2 \text{ GeV}^2$ i.e. $Z_{\Gamma}((a\Lambda)^{-2}; (a\tilde{p}_{M2})^2) = Z_{\Gamma}(\tilde{p}_{M2}^2/\Lambda^2; (a\tilde{p}_{M2})^2) E_{\Gamma}^{PT}(\tilde{p}_{M2}^2 \rightarrow a^{-2})$ and get $Z_{\Gamma}((a\Lambda)^{-2}; 0)$ by extrapolation in $(a\tilde{p}_{M2})^2$) (by averaging around \tilde{p}_{M2}^2)
 - 2 remove residual O(a) artifacts in RCs via θ -average (see below)
 - **③** sea chiral limit: $(M_{sea})^2 \rightarrow 0$ taking θ-dependence into account

Some analysis possible and improvements planned... D. Palao — Villasimius — Lattice 2010 $N_f = 4$ RCs

・ロト・4部・4部・4部・38・999

heta-dependence in chiral limit extrapolation of RC estimators (II)*

 θ -averaged $Z_{q,\Gamma}$ -estimators are O(a) improved \Rightarrow admit a Symanzik description where only one insertion of $a^2 L_6$ & two of $a L_5$ appear In particular: θ -dependence at O(a^2) gets considerably simplified after θ -average

From $\mathcal{P} \times (\theta \to -\theta)$ symmetry and form aL_5 and a^2L_6 one finds $Z_{\Gamma}^{\text{est}} - Z_{\Gamma}^{(\chi)} = R_1M + R_2M^2 + a^2\rho_3M\cos(2\theta) + a^2\rho_4M^2\cos(2\theta)$ up to corrections of order M^3 or higher – negligible in our data. Terms linear in *M* reflect χ -SSB and are suppressed $\sim \Lambda_{QCD}^2/p^2$

In our PQ setup (with $M_{
m val},\, heta_{
m val}$ & $M_{
m sea},\, heta_{
m sea}$) and current analysis

• valence χ -limit before θ -average: good fits in terms of $(M_{PS}^{val})^2$

• sea χ -limit after θ -average: fit with $R_2 M_{sea}^2 + a^2 \rho_4 M_{sea}^2 \cos(2\theta_{sea})$ is very good [tried ansatz with $M^2 \rightarrow M$, too: fit quality similar, results ~ identical (up to few 0.001)]

The $(M_{\rm PS}^{\rm val})^2$ -dependence of RC-estimators **@** $(a\tilde{p})^2 = 1.5$

Figure: 4m, 4m and 2p

The \tilde{p}^2 -dependence of RC-estimators **O** $M^{\text{val}} = 0$

Figure: ensembles 1m and 2p

M1: intercept at $\tilde{p}^2 = 0$ of the shown best fit lines M2: values at $\tilde{p}^2 = 12.2 \text{ GeV}^2$, here corresponding to $a^2 \tilde{p}^2 = 1.9$

The M^{sea} -dependence after θ -average [M1/M2 @ $M^{\text{val}} = 0$]

left: M1; right: M2

э

First analysis results for RCs [M1/M2 @ $M^{\text{sea}} = M^{\text{val}} = 0$]

VERY PRELIMINARY!

RC(RI')	M1	M2	Alternative
Z_A	0.761(08)	0.771(03)	OS-tm
Z_V	0.630(05)	0.674(03)	WI: 0.6120(05)
$Z_P(1/a)$	0.438(08)	0.496(04)	_
$Z_S(1/a)$	0.614(09)	0.647(03)	—
Z_P/Z_S	0.716(21)	0.767(08)	OS-tm
$Z_T(1/a)$	0.753(07)	0.768(03)	—
$Z_q(1/a)$	0.767(06)	0.813(02)	—

イロン イロン イヨン イヨン

э

Conclusions & outlook

- Very encouraging results at $\beta = 1.95 \rightarrow$ workable approach
- Usual & mild valence quark mass dependence observed
- Mild sea quark mass dependence, in particular after θ -average
- One (two) more $M_{\rm sea}$ point(s) at $\beta=1.95$ to reduce errors
- Removal of O(a²) effects at 1-loop PT plus some analysis improvements are planned
- Extend work to other β 's: 2.1 (in progress), 2.0 and 1.9