The spectrum of static-light baryons in twisted mass IQCD Lattice 2010

Christian Wiese
\& Marc Wagner

Humboldt-University Berlin

June 17th 2010

Abstract

- Compute the static-light baryon spectrum with $N_{f}=2$ flavors of sea quarks using wilson tm IQCD.
- Unitary light quarks as well as partially quenched light quarks (mass of physical strange quark)
- Masses of states with isospin $I=0, I=1 / 2$ and $I=1$, with light cloud angular momentum $j=0$ and $j=1$, and with parity $P=+$ and $P=-$.
- Preliminary extrapolation in the light u / d and in the heavy quark mass to the physical point and compare with available experimental results.

Introduction

- Static light baryon: a bound state of an infinite heavy quark and two light quarks
- Approximation of a B-baryon
- States are classified by: flavor, angular momentum, parity and isospin
- Many low-lying states accessible on the lattice
- Our goal: compute the masses of experimental known and unknown states

The form of baryon operators

We use operators of the form:

$$
\mathcal{O}_{\Gamma}=\epsilon^{a b c} Q^{a}\left(\left(q^{b}\right)^{T} \mathcal{C} \Gamma q^{c}\right)
$$

Where $\mathcal{C}=\gamma_{0} \gamma_{2}$ and Γ a suitable combination of γ matrices yielding well-defined spin and parity
We require:

- gauge invariance
- well-defined spin (light quarks have relative angular momentum 0, i.e. are in a S wave)
- well-defined parity
- well-defined isospin

The heavy quark operator

Baryon creation operator:

$$
\mathcal{O}_{\Gamma}=\epsilon^{a b c} Q^{a}\left(\left(q^{b}\right)^{T} \mathcal{C} \Gamma q^{c}\right)
$$

- In the operator, Q represents the bottom quark.
- We treat it in the static approximation. (legitimate because of its large mass)
- Choosing an infinite heavy quark implies that we can only compute mass differences to bottom particles (e.g. the B meson).
- Use HQET to write its propagator as:

$$
\left(Q^{B}\right)^{-1}(x, y) \sim \delta^{(3)}(\mathbf{x}-\mathbf{y}) U\left(\mathbf{x}, x_{0} ; \mathbf{y}, y_{0}\right)
$$

The light quark operators

$$
\mathcal{O}_{\Gamma}=\epsilon^{a b c} Q^{a}\left(\left(q^{b}\right)^{T} \mathcal{C} \Gamma q^{c}\right)
$$

- q represents the light quarks; we studied up, down and partially quenched strange quarks.
- For two light quarks we use $q q \equiv \mathrm{uu}, \mathrm{dd}$, ud+du, ud-du to obtain well-defined isospion.

List of baryon operators

$$
\epsilon^{a b c} Q^{a}\left(\left(q^{b}\right)^{T} \mathcal{C} \Gamma q^{c}\right)
$$

creation operator	$j^{\mathcal{P}}$	J	I	u / d	I	$u d / s$	I	s / s
$\Gamma=\gamma_{5}$	0^{+}	$1 / 2$	0	Λ_{b}	$1 / 2$	Ξ_{b}	-	-
$\Gamma=\gamma_{0} \gamma_{5}$	0^{+}	$1 / 2$	0	Λ_{b}	$1 / 2$	Ξ_{b}	-	-
$\Gamma=\mathbb{1}$	0^{-}	$1 / 2$	0	$?$	$1 / 2$	$?$	-	-
$\Gamma=\gamma_{0}$	0^{-}	$1 / 2$	1	$?$	$1 / 2$	$?$	0	$?$
$\Gamma=\gamma_{j}$	1^{+}	$1 / 2,3 / 2$	1	Σ_{b}	$1 / 2$	$\left(\Xi_{b}\right) ?$	0	Ω_{b}
$\Gamma=\gamma_{0} \gamma_{j}$	1^{+}	$1 / 2,3 / 2$	1	Σ_{b}	$1 / 2$	$\left(\Xi_{b}\right) ?$	0	Ω_{b}
$\Gamma=\gamma_{j} \gamma_{5}$	1^{-}	$1 / 2,3 / 2$	0	$?$	$1 / 2$	$?$	-	-
$\Gamma=\gamma_{0} \gamma_{j} \gamma_{5}$	1^{-}	$1 / 2,3 / 2$	1	$?$	$1 / 2$	$?$	0	$?$

the twisted mass fomalism

Computing was done using the twisted mass fermionic action $S_{F}[\chi, \bar{\chi}, U]=a^{4} \sum_{x} \bar{\chi}\left(i \underline{\gamma}^{\mu} \mathcal{D}_{\mu}-\frac{a}{2} \square+m+i \mu \gamma_{5} \tau_{3}\right) \chi$
$\psi=\exp \left(i \omega \gamma_{5} \tau_{3} / 2\right) \chi, \quad \bar{\psi}=\bar{\chi} \exp \left(i \omega \gamma_{5} \tau_{3} / 2\right)$
$+\mathcal{O}(a)$ improvement

+ Wilson formalism \rightarrow fast
- parity and flavor breaking
$-\Rightarrow$ different quantum numbers, correlation matrices
\Rightarrow Choose the operators with well-defined twisted quantum numbers.
\Rightarrow Interpret physical content of states by means of eigenvector components from GEP and rotating them back to the pseudo physical basis

Correlation matrices

Considering correlation matrices

$$
C_{\Gamma_{j}, \Gamma_{k}}(t)=\langle\Omega| \mathcal{O}_{\Gamma_{j}}(t) \mathcal{O}_{\Gamma_{k}}(0)^{\dagger}|\Omega\rangle
$$

for each sector corresponding to twisted quantum numbers ($\mathcal{P}^{(t m)}$, I_{z}, j), we get:

$$
\begin{aligned}
& C_{\Gamma_{j}, \Gamma_{k}}(t)=\epsilon^{a b c} \epsilon^{\text {def }} \\
& \left\langle U^{a d}(t, 0) \operatorname{Tr}_{\text {spin }}\left(\Gamma_{1}\left[\left(Q^{\chi^{q_{1}}}\right)^{-1}\right]^{c f}(t, 0) \Gamma_{2}\left[\left(Q^{\chi^{q_{2}}}\right)^{-1}\right]^{b e}(t, 0)\right)\right\rangle
\end{aligned}
$$

Many matrix elements are related by the twisted mass symmetries. (γ_{5} hermiticity, time reversal, parity, charge conjugation, cubic rotations) \Rightarrow we can compute the averages.

Simulation setup

We used the following setup:
Gauge configurations:

$$
\beta=3.9(a \approx 0.08 \mathrm{fm}), \mathrm{L} / \mathrm{a}=24(1.922 \mathrm{fm}), \mathrm{T} / \mathrm{a}=48
$$

(3.8448 fm)
in the following preliminary results obtained with 270 gauge confs: $200\left(m_{\pi}=336 \mathrm{MeV}\right)+40\left(m_{\pi}=417 \mathrm{MeV}\right)+30$ ($m_{\pi}=517 \mathrm{MeV}$)
Inversions:
2×12 timediluted stochastic sources for each gauge conf, μ $=0.0040,0.0064,0.0100\left(m_{\pi}=336 \mathrm{MeV}, 417 \mathrm{MeV}, 517\right.$ MeV) for ud-quarks, $\mu=0.0220$ for partially quenched s-quarks
Smearing:
quark fields: Gaussian smearing (3 different smearing levels)
Spatial links: APE smearing (1 smearing level)
Temporal links: HYP2 static action

- $\Lambda_{b} \rightarrow$ QCD quantum numbers $I=0, j^{\mathcal{P}}=0^{+}$
- 3×3 correlation matrix, u/d quark, $\mu=0.0040$
- experiment $m\left(\Lambda_{b}\right)-m(B)=339.2(1.4) \mathrm{MeV}$
- $m-m(B)=461(24) \mathrm{MeV}$

- $\Sigma_{b} \rightarrow$ QCD quantum numbers $I=1, j^{\mathcal{P}}=1^{+}$
- 3×3 correlation matrix, (u / d), (u/u, d/d) quarks
- experiment $m\left(\Sigma_{b}\right)-m(B)=525 \ldots 560 \mathrm{MeV}$
- $m-m(B)=689(7) \mathrm{MeV}, m-m(B)=680(15) \mathrm{MeV}$

- $\Omega_{b} \rightarrow$ QCD quantum numbers $j^{\mathcal{P}}=1^{+}$
- 3×3 correlation matrix, ($\mathrm{s}+/ \mathrm{s}-$), ($\mathrm{s}+/ \mathrm{s}+, \mathrm{s}-/ \mathrm{s}-$) quarks
- experiment $m\left(\Omega_{b}\right)-m(B)=886(23) \mathrm{MeV}$ (775(7) MeV CDF-Data)
- $m-m(B)=863(8) \mathrm{MeV}, m-m(B)=876(7) \mathrm{MeV}$

Extrapolation in the light quark mass

- $\Lambda_{b}: 428(40) \mathrm{MeV}$ (experiment: 341 (1) MeV)
- $\Sigma_{b}: 661(37) \mathrm{MeV}$ (experiment: $525 \ldots 560 \mathrm{MeV}$)
- $\Omega_{b}: 869(25) \mathrm{MeV}$ (experiment: 886(23) MeV (775(7) MeV CDF-Data))

Problems

- \Rightarrow Masses for baryons with light quarks are to high (≈ 100 MeV)
- Possible reasons
- Is linear fit appropriate in the physical u/d quark region?
- Dependence on the heavy quark mass
- Scale setting (from light mesons) corresponds to $r_{0}=0.42 \mathrm{fm}$
- Comparison with other results ($r_{0}=0.49 \mathrm{fm}$)
- $m\left(\Lambda_{b}\right) r_{0}=0.91(9)\left(0.89(14)^{\dagger}\right)$
- $m\left(\Sigma_{b}\right) r_{0}=1.41(8)\left(1.38(14)^{\dagger}\right)$
\dagger [T. Burch et al., Phys. Rev. D 79, 014504 (2009) [arXiv:0809.1103 [hep-lat]]]

Results compared to experimental results

baryon	$j^{\mathcal{P}}$	I	$m-m(B)$ our result $[\mathrm{MeV}]$	$m-m(B)$ experiment $[\mathrm{MeV}]$
Λ_{b}	0^{+}	0	$428(42)$	$339,2(1.4)$
$\Sigma_{b}(u d)$	1^{+}	1	$661(37)$	$525 \ldots 560$
$\Sigma_{b}(u u)$	1^{+}	1	$653(33)$	$525 \ldots 560$
$\Xi_{b}\left(s^{-} u\right)$	0^{+}	$1 / 2$	$622(32)$	$513(3)$
$\Xi_{b}\left(s^{+} u\right)$	0^{+}	$1 / 2$	$668(24)$	$513(3)$
$\Omega_{b}\left(s^{+} s^{-}\right)$	1^{+}	-	$869(25)$	$886(23)(775(7))$
$\Omega_{b}\left(s^{+} s^{+}\right)$	1^{+}	-	$891(23)$	$886(23)(775(7))$

Results without experimental results

baryon	$j^{\mathcal{P}}$	I	$m-m(B)$ our result $[\mathrm{MeV}]$	$m-m(B)$ experiment $[\mathrm{MeV}]$
$\left(\Xi_{b}\right) ?\left(s^{-} u\right)$	1^{+}	$1 / 2$	$778(32)$	$? ?$
$\left(\Xi_{b}\right) ?\left(s^{+} u\right)$	1^{+}	$1 / 2$	$787(37)$	$? ?$
$? ?(u d)$	1^{-}	1	$994(82)$	$? ?$
$? ?(u d)$	1^{-}	1	$999(68)$	$? ?$
$? ?\left(s^{+} u\right)$	0^{-}	$1 / 2$	$1184(76)$	$? ?$
$? ?\left(s^{-} u\right)$	0^{-}	$1 / 2$	$1244(59)$	$? ?$
$? ?\left(s^{-} u\right)$	1^{-}	$1 / 2$	$1216(59)$	$? ?$
$? ?\left(s^{+} u\right)$	1^{-}	$1 / 2$	$1267(48)$	$? ?$
$? ?\left(s^{+} s^{-}\right)$	1^{-}	-	$1280(57)$	$? ?$
$? ?\left(s^{+} s^{+}\right)$	1^{-}	-	$1297(59)$	$? ?$
$? ?(u d)$	0^{-}	0	$1370(98)$	$? ?$
\cdot.

Interpolation in the heavy quark mass

We used experimental results for charmed baryons to perform an interpolation in the heavy quark mass and observe spin splitting.

Conclusion \& Future plans

Achievements

- So far we computed the masses of 10 QCD states (4 are experimentally known); due to tm isospin and parity breaking these 10 states correspond to 18 tm states
- We considered 3 light quark masses and did an extrapolation to the physical point.
- Problem: Several masses we extracted are too high.

Future plans

- Increase statistics, find excited states
- Consider other light quark masses for extrapolation
- Continuum limit

Ideas for the future

- Use $N_{f}=2+1+1$ configurations for calculation of static-strange quarks

