Results

The spectrum of static-light baryons in twisted mass IQCD Lattice 2010

> Christian Wiese & Marc Wagner

Humboldt-University Berlin

June 17th 2010

C. Wiese Static-light baryons

Introduction	Baryon operators	Setup and technical details	Results
Abstract			

USLIAUL

- Compute the static-light baryon spectrum with $N_f = 2$ flavors of sea quarks using wilson tm IQCD.
- Unitary light quarks as well as partially quenched light quarks (mass of physical strange quark)
- Masses of states with isospin I = 0, I = 1/2 and I = 1, with light cloud angular momentum j = 0 and j = 1, and with parity P = + and P = -.
- Preliminary extrapolation in the light u/d and in the heavy quark mass to the physical point and compare with available experimental results.

Introduction

- Static light baryon: a bound state of an infinite heavy quark and two light quarks
- Approximation of a B-baryon
- States are classified by: flavor, angular momentum, parity and isospin
- Many low-lying states accessible on the lattice
- Our goal: compute the masses of experimental known and unknown states

The form of baryon operators

We use operators of the form:

$$\mathcal{O}_{\Gamma} = \epsilon^{abc} Q^a \left((q^b)^T \mathcal{C} \Gamma q^c \right)$$

Where $C = \gamma_0 \gamma_2$ and Γ a suitable combination of γ matrices yielding well-defined spin and parity We require:

- gauge invariance
- well-defined spin (light quarks have relative angular momentum 0, i.e. are in a S wave)
- well-defined parity
- well-defined isospin

The heavy quark operator

Baryon creation operator:

$$\mathcal{O}_{\Gamma} = \epsilon^{abc} Q^a \left((q^b)^T \mathcal{C} \Gamma q^c \right)$$

- In the operator, Q represents the bottom quark.
- We treat it in the static approximation. (legitimate because of its large mass)
- Choosing an infinite heavy quark implies that we can only compute mass differences to bottom particles (e.g. the B meson).
- Use HQET to write its propagator as:

$$\left(Q^B\right)^{-1}(x,y) \sim \delta^{(3)}(\mathbf{x}-\mathbf{y})U(\mathbf{x},x_0;\mathbf{y},y_0)$$

The light quark operators

$$\mathcal{O}_{\Gamma} = \epsilon^{abc} Q^a \left((q^b)^T \mathcal{C} \Gamma q^c \right)$$

- q represents the light quarks; we studied up, down and partially quenched strange quarks.
- For two light quarks we use qq ≡ uu, dd, ud+du, ud-du to obtain well-defined isospion.

List of baryon operators

 $\epsilon^{abc}Q^a\left((q^b)^T\mathcal{C}\Gamma q^c\right)$

creation operator	$j^{\mathcal{P}}$	J	Ι	u/d	Ι	ud/s	Ι	s/s
$\Gamma = \gamma_5$	0^{+}	1/2	0	Λ_b	1/2	Ξ_b	_	_
$\Gamma = \gamma_0 \gamma_5$	0^{+}	1/2	0	Λ_b	1/2	Ξ_b	—	—
$\Gamma = 1$	0^{-}	1/2	0	?	1/2	?	—	_
$\Gamma = \gamma_0$	0^{-}	1/2	1	?	1/2	?	0	?
$\Gamma = \gamma_j$	1^{+}	1/2, 3/2	1	Σ_b	1/2	$(\Xi_b)?$	0	Ω_b
$\Gamma = \gamma_0 \gamma_j$	1^{+}	1/2, 3/2	1	Σ_b	1/2	$(\Xi_b)?$	0	Ω_b
$\Gamma = \gamma_j \gamma_5$	1^{-}	1/2, 3/2	0	?	1/2	?	—	—
$\Gamma = \gamma_0 \gamma_j \gamma_5$	1-	1/2, 3/2	1	?	1/2	?	0	?

the twisted mass fomalism

Computing was done using the twisted mass fermionic action $S_F[\chi, \bar{\chi}, U] = a^4 \sum_x \bar{\chi} \left(i \gamma^{\mu} \mathcal{D}_{\mu} - \frac{a}{2} \Box + m + i \mu \gamma_5 \tau_3 \right) \chi$ $\psi = \exp \left(i \omega \gamma_5 \tau_3 / 2 \right) \chi, \quad \bar{\psi} = \bar{\chi} \exp \left(i \omega \gamma_5 \tau_3 / 2 \right)$

- $+ \mathcal{O}(a)$ improvement
- $+ \ \text{Wilson formalism} \rightarrow \text{fast}$
- parity and flavor breaking
- \Rightarrow different quantum numbers, correlation matrices

 \Rightarrow Choose the operators with well-defined twisted quantum numbers.

 \Rightarrow Interpret physical content of states by means of eigenvector components from GEP and rotating them back to the pseudo physical basis

Introduction									
		۲r	\mathbf{a}	а	C 1	-	0	n	
		ы.	U	u	U		U		

Correlation matrices

Considering correlation matrices

$$C_{\Gamma_j,\Gamma_k}(t) = \langle \Omega | \mathcal{O}_{\Gamma_j}(t) \mathcal{O}_{\Gamma_k}(0)^{\dagger} | \Omega \rangle$$

for each sector corresponding to twisted quantum numbers ($\mathcal{P}^{(tm)}$, I_z , j) , we get:

$$C_{\Gamma_{j},\Gamma_{k}}(t) = \epsilon^{abc} \epsilon^{def} \left\langle U^{ad}(t,0) \operatorname{Tr}_{\mathsf{spin}} \left(\Gamma_{1} \left[\left(Q^{\chi^{q_{1}}} \right)^{-1} \right]^{cf}(t,0) \Gamma_{2} \left[\left(Q^{\chi^{q_{2}}} \right)^{-1} \right]^{be}(t,0) \right) \right\rangle$$

Many matrix elements are related by the twisted mass symmetries. (γ_5 hermiticity, time reversal, parity, charge conjugation, cubic rotations) \Rightarrow we can compute the averages.

Simulation setup

We used the following setup:

Gauge configurations:

 $\beta=$ 3.9 ($a\approx 0.08$ fm), L/a = 24 (1.922 fm), T/a = 48 (3.8448 fm)

in the following preliminary results obtained with 270 gauge confs: 200 (m_{π} = 336 MeV) + 40 (m_{π} = 417 MeV) + 30 (m_{π} = 517 MeV)

Inversions:

2x12 timediluted stochastic sources for each gauge conf, μ = 0.0040, 0.0064, 0.0100 (m_π = 336 MeV, 417 MeV, 517 MeV) for ud-quarks, μ = 0.0220 for partially quenched s-quarks

Smearing:

quark fields: Gaussian smearing (3 different smearing levels) Spatial links: APE smearing (1 smearing level)

Temporal links: HYP2 static action

- $\Lambda_b
 ightarrow {
 m QCD}$ quantum numbers I=0, $j^{\cal P}=0^+$
- 3 x 3 correlation matrix, u/d quark, $\mu = 0.0040$
- experiment $m(\Lambda_b) m(B) = 339.2(1.4) \text{MeV}$

•
$$m - m(B) = 461(24) \text{MeV}$$

C. Wiese Static-light baryons

- $\Sigma_b \rightarrow$ QCD quantum numbers $I = 1, \ j^{\mathcal{P}} = 1^+$
- 3×3 correlation matrix, (u/d), (u/u, d/d) quarks
- experiment $m(\Sigma_b) m(B) = 525...560 \text{ MeV}$
- m m(B) = 689(7) MeV, m m(B) = 680(15) MeV

- $\Omega_b
 ightarrow {\sf QCD}$ quantum numbers $j^{\mathcal{P}} = 1^+$
- 3×3 correlation matrix, (s+/s-), (s+/s+, s-/s-) quarks
- experiment $m(\Omega_b) m(B) = 886(23) \text{MeV}$ (775(7) MeV CDF-Data)
- m m(B) = 863(8) MeV, m m(B) = 876(7) MeV

Extrapolation in the light quark mass

- Λ_b : 428(40) MeV (experiment: 341(1) MeV)
- Σ_b : 661(37) MeV (experiment: 525 ... 560 MeV)
- $\Omega_b: 869(25)$ MeV (experiment: 886(23) MeV (775(7) MeV CDF-Data))

Problems

- \Rightarrow Masses for baryons with light quarks are to high (\approx 100 MeV)
- Possible reasons
 - $\bullet\,$ Is linear fit appropriate in the physical u/d quark region?
 - Dependence on the heavy quark mass
 - Scale setting (from light mesons) corresponds to $r_0=0.42~{
 m fm}$
- Comparison with other results $(r_0 = 0.49 \text{ fm})$
- $m(\Lambda_b)r_0 = 0.91(9) \ (0.89(14)^{\dagger})$
- $m(\Sigma_b)r_0 = 1.41(8) \ (1.38(14)^{\dagger})$

†[T. Burch et al., Phys. Rev. D 79, 014504 (2009) [arXiv:0809.1103 [hep-lat]]]

Results compared to experimental results

baryon	$j^{\mathcal{P}}$	Ι	m - m(B)	m - m(B)
			our result	experiment
			[MeV]	[MeV]
Λ_b	0^{+}	0	428(42)	339, 2(1.4)
$\Sigma_b(ud)$	1^{+}	1	661(37)	525560
$\Sigma_b(uu)$	1^{+}	1	653(33)	525560
$\Xi_b(s^-u)$	0^{+}	1/2	622(32)	513(3)
$\Xi_b(s^+u)$	0^{+}	1/2	668(24)	513(3)
$\Omega_b(s^+s^-)$	1^{+}	_	869(25)	886(23) (775(7))
$\Omega_b(s^+s^+)$	1^{+}	_	891(23)	886(23) (775(7))

Results without experimental results

baryon	$j^{\mathcal{P}}$	Ι	m - m(B)	m - m(B)
			our result	experiment
			[MeV]	[MeV]
$(\Xi_b)?(s^-u)$	1+	1/2	778(32)	??
$(\Xi_b)?(s^+u)$	1^{+}	1/2	787(37)	??
??(ud)	1-	1	994(82)	??
??(ud)	1-	1	999(68)	??
$??(s^+u)$	0^{-}	1/2	1184(76)	??
$??(s^-u)$	0^{-}	1/2	1244(59)	??
$??(s^-u)$	1-	1/2	1216(59)	??
$??(s^+u)$	1-	1/2	1267(48)	??
$??(s^+s^-)$	1-	_	1280(57)	??
$??(s^+s^+)$	1-	_	1297(59)	??
??(ud)	0^{-}	0	1370(98)	??

C. Wiese

Static-light baryons

Interpolation in the heavy quark mass

We used experimental results for charmed baryons to perform an interpolation in the heavy quark mass and observe spin splitting.

Conclusion & Future plans

Achievements

- So far we computed the masses of 10 QCD states (4 are experimentally known); due to tm isospin and parity breaking these 10 states correspond to 18 tm states
- We considered 3 light quark masses and did an extrapolation to the physical point.
- Problem: Several masses we extracted are too high.

Future plans

- Increase statistics, find excited states
- Consider other light quark masses for extrapolation
- Continuum limit

Ideas for the future

• Use $N_f = 2 + 1 + 1$ configurations for calculation of static-strange quarks