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range of simulations 
(              )Nτ = 4

mq = (2/5 − 1/80)ms

Critical Behavior of  QCD (I)

Simulations with improved 
staggered fermions (p4fat3)• chiral symmetry of 2-flavor QCD

• hence, if       is large in 
(2+1)-flavor QCD:

expect universal behavior as of 
3d-         spins in the vicinity 
of       and the chiral limit

• so far no clear evidence from 
simulations

• staggered fermions preserve a 
flavor non-diagonal         -part of 
chiral symmetry even at

U(1)
a > 0

look for        -critical 
behavior
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3Critical Behavior of  QCD (II) 

line of 2. order 
           transitions O(4)

Z(2)
critical

 end-point

T

µ

line of 1. order 
    transitions

mu = md = 0
ms > mtri

s

Z(2)
critical

 end-point

T

µ

line of 1. order 
    transitions

ms > mtri
s

mu = md > 0

expected           -phase diagrams:(T, µ)

• situation at nonzero chemical 
potential is very unclear

• direct simulations MC simulations 
are prohibited by the sign-problem

use Taylor expansion 
approach

→



4Outline 

★ Introduction

★ Scaling of  chiral condensate ( The magnetic EoS )
• introduce some analogies between spin models and QCD

• fit p4fat3-data (                   ) to  magnetic scaling function

determine important non universal constants of  QCD

★ Scaling of  chiral and mixed susceptibilities
• fit p4fa3-data to scaling functions       and

more sesitivity to the universality class

predictions on the critical line

★ Summary

Nτ = 4, 8 fG

→

fχ f ′
G

→
→



The scaling hypothesis 5

• Thermodynamics in the vicinity of a critical point:

−
1
V

ln Z = fs(t, h) + fr(T, V, H)
(singular part) (regular part)

free energy 
density:

where t =
1
t0

T − Tc

Tc

(reduced temperature)

h =
H

h0

(external field)

QCD:
H ∼ mq

(quark mass)

H = ml/ms

our choice:

assume:

b = h−1/yh

fs(t, h) = b−dfs(bytt, byhh)

fs(t, h) = h0h1+1/δfM(z)

choose:

z = t/h1/βδwith

(scaling variable)(“magnetic version” of the fee energy density)



6Magnetic EoS in            -spin models O(N)

• order parameter (magnetization):

• scaling variable:

universal scaling function

• scaling function and critical exponents are known to high precision in 
condensed matter literature [e.g. Engels et al.]

• scaling function includes Goldstone effect in the limit of z → −∞
z → −∞ : h → 0, t < 0

z = t/h1/βδ

M ∼ (−t)β + c(t)
√

h

fG(z) = −
[(

1 +
1
δ

)
fM(z) −

z

βδ
f ′

M(z)
]

M = −
∂fs(t, h)

∂H
=

1
h0

∂fs(t, h)
∂h

≡ h1/δfG(z)



7Lattice setup 

• lattice action: improved staggered fermions (p4fat3), (2+1)-flavor
• algorithm: exact RHMC

• statistics (measurements separated by 10 trajectories):

Lattice Results on Critical Scaling and Goldstone Scaling Simulation Details

Setup of Lattice Calculations

preliminary data of the RBC-Bielefeld collaboration for Nf = 2 + 1:

fermion action: p4fat3 (fattening reduces taste breaking)

susceptibilities measured with up to 20 random vectors (noisy estimator)

statistics (measurements separated by 10 trajectories):

lattice dim. mq/ms statistics lattice dim. mq/ms statistics
323 × 4 1/80 O(20000)
323 × 4 1/40 O(20000)
163 × 4 1/40 O(30000) 323 × 8 1/40 just started
163 × 4 1/20 O(40000) 323 × 8 1/20 O(20000)
163 × 4 1/10 O(40000) 323 × 8 1/10 O(30000)
163 × 4 1/5 O(40000) 323 × 8 1/5 O(30000)
163 × 4 2/5 O(40000)

β = 3.2800, . . . 3.3300 β = 3.4800, . . . 3.5400

with ms fixed to physical value, msa = 0.065 for Nτ = 4 and msa = 0.024 for Nτ = 8

(→ Mss̄ # 669 MeV) we find:

mq/ms = 1/20 : → Mπ,5 " 150 MeV
mq/ms = 1/80 : → Mπ,5 " 75 MeV

Wolfgang Unger, Universität Bielefeld () Magnetic Equation of State in QCD Darmstadt, 25. May 2010 22 / 40

S. Ejiri et al. [RBC-Bielefeld-GSI], PRD 80 (2009) 094505.
M. Cheng et al. [RBC-Bielefeld-GSI], PRD 81 (2010) 054504.
A. Bazavov et al. [HotQCD], PRD 80 (2009) 014504.

• strange quark mass: fixed to physical values, Nτ = 4 : ams = 0.065
Nτ = 8 : ams = 0.024

→ ms̄s " 669 MeV

• light quark mass: mq/ms = 1/80 : → mπ = 75 MeV
mq/ms = 1/20 : → mπ = 150 MeV



8Magnetic EoS in QCD (Nt=4)

• two order parameter:
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M = ms
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−

ml

ms

〈
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s

)
/T 4} = h1/δfG(z)

• three fit parameter: critical temperature      (critical coupling    ), 
normalization constants

Tc βc

t0, h0

(subtracted condensate to remove UV-div.               )∼ ml/a2



9Magnetic EoS in QCD (Nt=4)
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• O(2) slightly preferred, however,  re-parametrization                
                                                              moves O(2) onto O(4)

z → 1.2z

→ scaling functions almost indistinguishable, we can not discriminate 
between O(2) and O(4)

z0 = t0/h1/βδ
0•                       is independent under re-scaling  (           not)  t0, h0

•                  might be a QCD invariant, which only depend on strange 
quark mass and lattice artifacts 
z0(ms, a2)



10Deviations from scaling (Nt=4)
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• deviations from scaling substantial for  ml/ms > 1/20

• include regular part into the fit:

M = h1/δfG(z) + at(T − Tc)H + b1H + b3H3

→ results for                 are recovered within errors βc, t0, h0

• mass range                             is well described by scaling function  ml/ms < 1/20



11Magnetic EoS in QCD (Nt=8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-3 -2 -1  0  1  2  3

M0/h1/!

z

"c= 3.2981(7)
h0=0.0036(4)
t0=0.0041(1)
z0=8.4(7)
b1=3.0(4)
at=9.1(20)
b3=-11.5(49)

N#=4: ml/ms
1/5

1/10
1/20
1/40
1/40
1/80  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-3 -2 -1  0  1  2  3

M0/h1/!

z

"c= 3.5018(0)
h0=0.0006(0)
t0=0.0029(1)
z0=4.1(2)
b1=2.9(5)
at=-8.2(16)
b3=15.4(73)

N#=8: ml/ms
1/5

1/10
1/20
1/40

•                 fit w/o scaling violations not possible yet   Nτ = 8 :

• fit for                                 (range                         ) works reasonably 
well          assume      to be stable/reliable

ml/ms ≥ 1/40βc, th, h0, at, h1, h3

→
• cutoff dependence: Nτ 4 8

z0 7.5(9) 4.3(5)

→ further studies are needed to control continuum limit   

z0



12Magnetic EoS in QCD (Nt=8)

•                 fit w/o scaling violations not possible yet   Nτ = 8 :

• fit for                                 (range                         ) works reasonably 
well          assume      to be stable/reliable

ml/ms ≥ 1/40βc, th, h0, at, h1, h3

→
• cutoff dependence: Nτ 4 8

z0 7.5(9) 4.3(5)

→ further studies are needed to control continuum limit   
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13Scaling of  chiral susceptibility (Nt=4)

• scaling function:
fχ(z) =

1
δ

(
fG(z) −

z

β
f ′

G(z)
)

• chiral susceptibilities scale reasonably well

•     more sensitive to universality class, however, statistics still not sufficient fχ
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FIG. 10: Susceptibilities constructed from the subtracted order parameter M (left) and the non-subtracted light quark chiral
condensate Mb (right). The data give results from calculations in (2+1)-flavor QCD on lattices with temporal extent Nτ = 4
and light quark mass values ml/ms ≤ 1/20 in the interval β ∈ [3.28, 3.33]. For the ml/ms = 1/40 data sample we show results
for two different spatial lattice sizes. Filled symbols correspond to Nσ = 32 and open symbols are for Nσ = 16.

to the O(2) spin models, at finite values of the cut-off the divergence of χcon ∼ 1/
√

m̂l in the chiral limit can thus
be understood in terms of taste violating contributions to the scalar correlation function [31]. We will discuss these
subtle aspects of susceptibilities of the order parameter, the influence of taste violating terms in the staggered action
on scaling properties of these susceptibilities and the resulting cut-off dependence of fχ in more detail in a forthcoming
publication [32].

VI. CONCLUSIONS

We have performed a new analysis of scaling properties of the light quark chiral condensate in (2 + 1)-flavor QCD.
We found that at fixed non-zero lattice spacing the chiral condensate calculated with improved staggered fermions
shows scaling behavior in the chiral limit that is consistent with O(2) scaling.

Through the analysis of scaling properties with quark masses that are smaller than the physical light quark masses
we could fix the normalization constants t0 and h0 in the scaling variables t and h. This allowed us to quantify scaling
violations for non-zero values of the quark masses in the vicinity of the phase transition temperature. These scaling
violations turned out to be small in the magnetic equation of state already for physical values of the quark mass.

On the basis of studying just the magnetic equation of state, we gave arguments that it will remain difficult to
rule out O(4) scaling without extraordinary precision of numerical lattice data. However, a distinction between O(2)
and O(4) scaling might become possible through an accurate analysis of susceptibilities of the order parameter. At
present, we still find significant deviations from scaling for the chiral susceptibility. This will be discussed in more
detail in a forthcoming publication [32].

A determination of t0 and h0 also fixes the scale parameter z0 = h1/βδ
0 /t0, which controls the quark mass dependence

of the pseudo-critical line determined from the peak in the chiral susceptibility. In our present analysis this parameter,
which uniquely characterizes non-universal aspects of critical behavior in QCD, has only been determined at one value
of the lattice cut-off. Calculations at smaller lattice spacings, together with good control over scaling violations induced
at non-vanishing quark masses will be needed to extract z0 in the O(4) symmetric continuum limit.

The good scaling properties found here in calculations with O(a2) improved gauge and fermion actions are in
contrast to earlier calculations that had been performed with unimproved staggered fermion and gauge actions. We
argued that the observed differences are due to cut-off effects.

In our analysis we have assumed that the strange quark mass in (2 + 1)-flavor QCD is large enough to avoid a
first order phase transition in the light quark chiral limit. Although the good scaling properties of the chiral order
parameters and the absence of a strong volume dependence in the light quark susceptibilities support this assumption,
we clearly cannot exclude a first order transition to occur at still lighter quark masses. Consistent with limits given
on the location of a first order transition in 3-flavor QCD [33, 34], however, our current analysis rules out such a
transition for pseudo-scalar masses mps ≥ 75 MeV.



14Thermal fluctuations of  the order parameter 

χt ≡
∂M

∂T
=

1
t0Tc

∂M

∂t
=

1
t0Tc

h(β−1)/βδf ′
G(z)

where t =
1
t0

T − Tc

Tc

(reduced temperature)

h =
H

h0

(external field)

• mixed 
susceptibility:

• introducing chemical potential:

t =
1
t0

(
T − Tc

Tc
+ κµ

(
µl

T

)2
)

• (other) mixed 
susceptibility: cψ̄ψ

2 ≡
∂2M

∂(µl/T )2

∣∣∣∣
µl=0

=
2κµ

t0Tc

∂M

∂t
=

2κµ

t0Tc
h(β−1)/βδf ′

G(z)

∝ χt

in the chiral limit:      does not break chiral symmetryµl

→ couples only to reduced temperature



15The critical line 

expected phase diagram

line of 2. order 
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• curvature of critical line in the ciral limit:

               known form scaling 
analysis of magnetic EoS
t0, h0, Tc

→ 2κµf ′
G(z)

t0Tch
(1−β)/βδcψ̄ψ

2

fit                 to     -dataχt

(one fit parameter)
→ preliminary result from fit to 

O(2) scaling curve:
κµ = 0.035(1)

→ for orientation: reweighting 
std. action, ml/ms = 1/27

κµ = 0.0288(9)
Z. Fodor and S.D. Katz, 
JHEP 0404 (2004)



16Summary 

★ The magnetic EoS 
• EoS consistent with 3d-O(N) scaling already at physical masses

• we find no evidence for nearby first order phase transitions 

★ Scaling of  chiral susceptibilities
• statistics not (yet) sufficient to discriminate between universality 

classes

★  Non-zero chemical potentails
• the curvature of  the critical line in the chiral limit can be extracted 

from scaling poperties of  mixed susceptibilities

all this needs to be confirmed in the continuum limit



17Check on finite size effects 

• no strong temperature dependence of 1/V corrections
• no evidence for finite size scaling        crossover

• thermodynamic limit well under control (for smalles mass:                  )         mπL ! 3
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18Scaling of  chiral susceptibility (Nt=8)

• scaling function:
fχ(z) =

1
δ

(
fG(z) −

z

β
f ′

G(z)
)

• full susceptibilities scale reasonably well (after subtraction of regular part)

•     more sensitive to universality class, however, statistics still not sufficient fχ
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