Lattice 2010 Monday June 14, 2010, Villasimius, Sardinia, Italy

On the universal O(N) scaling behavior of (2+1)-flavor QCD

Christian Schmidt

FIAS Frankfurt Institute for Advanced Studies

and

Helmholtzzentrum für Schwerionenforschung

for RBC-Bielefeld-GSI Collaboration:

S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C.S., W Söldner, W. Unger

> **based on:** S. Ejiri *et al.*, PRD 80 (2009) 094505.

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz

Critical Behavior of QCD (I)

- chiral symmetry of 2-flavor QCD $SU_L(2) imes SU_R(2) \simeq O(4)$
- hence, if m_s is large in (2+1)-flavor QCD: expect universal behavior as of 3d-O(4) spins in the vicinity of T_c and the chiral limit
- so far no clear evidence from simulations
- staggered fermions preserve a flavor non-diagonal U(1)-part of chiral symmetry even at a>0
 - \longrightarrow look forO(2)-critical behavior

Simulations with improved staggered fermions (p4fat3)

Critical Behavior of QCD (II)

- situation at nonzero chemical potential is very unclear
- direct simulations MC simulations are prohibited by the sign-problem
 - \rightarrow use Taylor expansion approach

expected (T,μ) -phase diagrams:

Outline

★ Introduction

★ Scaling of chiral condensate (The magnetic EoS)

- introduce some analogies between spin models and QCD
- fit p4fat3-data ($N_{ au}=4,8$) to magnetic scaling function f_G
 - \longrightarrow determine important non universal constants of QCD

★ Scaling of chiral and mixed susceptibilities

- fit p4fa3-data to scaling functions f_{χ} and f_G'
 - \longrightarrow more sesitivity to the universality class
 - $\longrightarrow \text{predictions}$ on the critical line

★ Summary

The scaling hypothesis

• Thermodynamics in the vicinity of a critical point:

free energy
density:
$$-\frac{1}{V} \ln Z = f_s(t,h) + f_r(T,V,H)$$
(singular part) (regular part)
where
$$t = \frac{1}{t_0} \frac{T - T_c}{T_c} \qquad h = \frac{H}{h_0} \longrightarrow \begin{array}{c} QCD: \\ H \sim m_q \\ (quark mass) \\ our choice: \\ H = m_l/m_s \end{array}$$
assume:
$$f_s(t,h) = b^{-d} f_s(b^{y_t}t, b^{y_h}h)$$
choose: $b = h^{-1/y_h}$

("magnetic version" of the fee energy density)

(scaling variable)

Magnetic EoS in O(N)-spin models

- scaling function and critical exponents are known to high precision in condensed matter literature [e.g. Engels et al.]
- scaling function includes Goldstone effect in the limit of $z \to -\infty$ $z \to -\infty$: $h \to 0, t < 0$ $M \sim (-t)^{\beta} + c(t)\sqrt{h}$

Lattice setup

- lattice action: improved staggered fermions (p4fat3), (2+1)-flavor
- algorithm: exact RHMC
- strange quark mass: fixed to physical values, $N_{ au} = 4: am_s = 0.065$ $N_{ au} = 8: am_s = 0.024$ $\rightarrow m_{\bar{s}s} \simeq 669 \text{ MeV}$
- light quark mass: $m_q/m_s = 1/80: \rightarrow m_\pi = 75 \text{ MeV}$ $m_q/m_s = 1/20: \rightarrow m_\pi = 150 \text{ MeV}$
- statistics (measurements separated by 10 trajectories):

lattice dim.	m_q/m_s	statistics	lattice dim.	m_q/m_s	statistics
$32^3 \times 4$	1/80	$\mathcal{O}(20000)$			
$32^3 \times 4$ \blacktriangle	1/40	$\mathcal{O}(20000)$			
$16^3 imes 4$ 🔺	1/40	$\mathcal{O}(30000)$	$32^3 imes 8$	1/40	just started
$16^3 imes 4$ 🔺	1/20	$\mathcal{O}(40000)$	$32^3 \times 8 \blacklozenge$	1/20	$\mathcal{O}(20000)$
$16^3 imes 4$ 🔺	1/10	$\mathcal{O}(40000)$	32 ³ × 8 ★	1/10	$\mathcal{O}(30000)$
$16^3 imes 4$ 🔺	1/5	$\mathcal{O}(40000)$	32 ³ × 8 ★	1/5	$\mathcal{O}(30000)$
$16^3 imes 4$ 🔺	2/5	$\mathcal{O}(40000)$			
$\beta = 3.2800,$	• • •	3.3300	eta= 3.4800,	• • •	3.5400

- ▲ S. Ejiri et al. [**RBC-Bielefeld-GSI**], PRD 80 (2009) 094505.
- ♦ M. Cheng et al. [RBC-Bielefeld-GSI], PRD 81 (2010) 054504.
- ★ A. Bazavov et al. [**HotQCD**], PRD 80 (2009) 014504.

Magnetic EoS in QCD (Nt=4)

• two order parameter:

$$egin{aligned} M_0 &= m_s \left< ar{\psi} \psi \right>_l / T^4 \ M &= m_s \left(\left< ar{\psi} \psi \right>_l - rac{m_l}{m_s} \left< ar{\psi} \psi \right>_s
ight) / T^4 \end{aligned} = h^{1/\delta} f_G(z) \end{aligned}$$

(subtracted condensate to remove UV-div. $\sim m_l/a^2$)

• three fit parameter: critical temperature T_c (critical coupling β_c), normalization constants t_0, h_0

Magnetic EoS in QCD (Nt=4)

- O(2) slightly preferred, however, re-parametrization $z \rightarrow 1.2z$ moves O(2) onto O(4)
 - \rightarrow scaling functions almost indistinguishable, we can not discriminate between O(2) and O(4)
- $z_0 = t_0/h_0^{1/eta\delta}$ is independent under re-scaling (t_0, h_0 not)
- $z_0(m_s, a^2)$ might be a QCD invariant, which only depend on strange quark mass and lattice artifacts

Deviations from scaling (Nt=4)

- ullet mass range $\, m_l/m_s < 1/20\,$ is well described by scaling function
- ullet deviations from scaling substantial for $\,m_l/m_s>1/20$
- include regular part into the fit:

$$M = h^{1/\delta} f_G(z) + a_t (T - T_c) H + b_1 H + b_3 H^3$$

ightarrow results for $eta_{m{c}}, t_0, h_0$ are recovered within errors

Magnetic EoS in QCD (Nt=8)

- $N_{ au}=8:$ fit w/o scaling violations not possible yet
- fit for $\beta_c, t_h, h_0, a_t, h_1, h_3$ (range $m_l/m_s \ge 1/40$) works reasonably well \rightarrow assume z_0 to be stable/reliable
- cutoff dependence:

 \rightarrow further studies are needed to control continuum limit

Magnetic EoS in QCD (Nt=8)

- $N_{ au}=8:$ fit w/o scaling violations not possible yet
- fit for $\beta_c, t_h, h_0, a_t, h_1, h_3$ (range $m_l/m_s \ge 1/40$) works reasonably well \rightarrow assume z_0 to be stable/reliable
- cutoff dependence:

 \rightarrow further studies are needed to control continuum limit

Scaling of chiral susceptibility (Nt=4)

• scaling function:

$$f_{\chi}(z) = rac{1}{\delta} \left(f_G(z) - rac{z}{eta} f_G'(z)
ight)$$

- chiral susceptibilities scale reasonably well
- f_{χ} more sensitive to universality class, however, statistics still not sufficient

Thermal fluctuations of the order parameter

• mixed susceptibility: $\chi_t \equiv \frac{\partial M}{\partial T} = \frac{1}{t_0 T_c} \frac{\partial M}{\partial t} = \frac{1}{t_0 T_c} h^{(\beta-1)/\beta\delta} f'_G(z)$

where
$$t = \frac{1}{t_0} \frac{T - T_c}{T_c}$$
 $h = \frac{H}{h_0}$
(reduced temperature) (external field)

• introducing chemical potential:

$$t = rac{1}{t_0} \left(rac{T-T_c}{T_c} + \kappa_{oldsymbol{\mu}} \left(rac{\mu_l}{T}
ight)^2
ight)$$

in the chiral limit: μ_l does not break chiral symmetry

 \rightarrow couples only to reduced temperature

• (other) mixed
susceptibility:
$$c_2^{\bar{\psi}\psi} \equiv \left. \frac{\partial^2 M}{\partial (\mu_l/T)^2} \right|_{\mu_l=0} = \frac{2\kappa_\mu}{t_0 T_c} \frac{\partial M}{\partial t} = \frac{2\kappa_\mu}{t_0 T_c} h^{(\beta-1)/\beta\delta} f'_G(z)$$

 $\propto \chi_t$

4

The critical line

• curvature of critical line in the ciral limit:

$$t = 0$$
 \leftarrow $\frac{T}{T_c} = 1 - \kappa_{\mu} \left(\frac{\mu_l}{T}\right)^2$

 t_0, h_0, T_c known form scaling analysis of magnetic EoS

- $\rightarrow \text{ fit } 2\kappa_{\mu}f'_{G}(z) \text{ to } \chi_{t}\text{-data} \\ \text{ (one fit parameter)} \\ \rightarrow \text{ preliminary result from fit to} \\ O(2) \text{ scaling curve:} \\ \kappa_{\mu} = 0.035(1) \\ \end{cases}$
- ightarrow for orientation: reweighting std. action, $m_l/m_s = 1/27$ $\kappa_\mu = 0.0288(9)$ Z. Fodor and S.D. Katz, JHEP 0404 (2004)

Summary

★ The magnetic EoS

- EoS consistent with 3d-O(N) scaling already at physical masses
- we find no evidence for nearby first order phase transitions
- **★** Scaling of chiral susceptibilities
 - statistics not (yet) sufficient to discriminate between universality classes

★ Non-zero chemical potentails

• the curvature of the critical line in the chiral limit can be extracted from scaling poperties of mixed susceptibilities

all this needs to be confirmed in the continuum limit

Check on finite size effects

- \bullet no evidence for finite size scaling \longrightarrow crossover
- no strong temperature dependence of I/V corrections
- ullet thermodynamic limit well under control (for smalles mass: $m_\pi L\simeq 3$)

Scaling of chiral susceptibility (Nt=8)

• scaling function:

$$f_{\chi}(z) = rac{1}{\delta} \left(f_G(z) - rac{z}{eta} f_G'(z)
ight)$$

- full susceptibilities scale reasonably well (after subtraction of regular part)
- f_{χ} more sensitive to universality class, however, statistics still not sufficient

