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Outline

• Exponential growth of the noise to signal ratio in lattice QCD and
YM theories

• Basic ideas for the Symmetry-Constrained Monte Carlo

The example of Parity (including results)

• Extension to other symmetries

• The strategy for the 0++ glueball (including results)

• Conclusions and outlook
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Exponential growth of the signal to noise ratio (Parisi ’84, Lepage ’89)

Consider a point to point correlation function interpolating (eg) a meson.
The signal is given by the expectation value of

while the a priori variance is given by the expectation value of

Luckily Wick-contractions are done before squaring, for the variance. Then a

multi-pion state dominates, otherwise it would be the vacuum (as for YM).
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pion RNS ∝ const

ρ RNS ∝ exp((mρ −mπ)t)

N RNS ∝ exp((mN − 3
2mπ)t)
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O(2000) quenched confs (β = 6.2, κ = 0.1526) in APE, hep-lat/9611021
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Yang-Mills theory

• For an operator interpolating a parity odd glueball

COG
(t) = 〈OG (t)OG (0)〉 → |〈0|OG (0)|G−〉|2 e−MG− t + . . .

the variance can be estimated as

σ2 = 〈O2
G (t)O2

G (0)〉 − 〈OG (t)OG (0)〉2 → 〈0|O2
G (0)|0〉2 + . . .

• The noise to signal ratio at large time separations is given by

RNS(t) →
〈0|O2

G (0)|0〉
|〈0|OG (0)|G−〉|2

eMG− t + . . .

⇐ On a given gauge configuration symmetries as parity are not
preserved. All states are allowed to propagate despite the quantum
numbers of the source.

⇒ For every gauge-field configuration the vacuum dominates. The signal
emerges due to large cancellations in the gauge average.

⇒ In the standard approach glueball masses are extracted at rather short
separations.
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Decomposition of the path integral and boundary conditions

with periodic boundary conditions Z =
∫

D3[V ]〈V |e−TĤ P̂G |V 〉

Z = Z+ + Z− , Z± = e−E0 T

[
1± 1

2
+

∑
n=1

w±
n e−E±n T

]

We introduce a parity transformation

℘̂ |V 〉 = |V ℘〉 , V ℘
k (x) = V †

k (−x− k̂) ,

with V̂k(x)|V 〉 = Vk(x)|V 〉 and

Z tw =

∫
D3[V ]〈V |e−TĤ P̂G |V ℘〉 =

∑
G

∫
D3[V ]〈V |G 〉〈G |e−TĤ℘̂|G 〉〈G |V 〉 = Z+ − Z−
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• We want to compute Z−

Z (T ) = 1
2

(
1− Z tw

Z

)
(T ) where, compared to

Z , the boundary conditions in Z tw are parity twisted. At large T we
should be able to extract the lightest parity odd glueball.

• We aim at a hierarchical integration scheme [Lüscher and Weisz, ’01]
and divide the system in thick time-slices of size d with boundaries
updated at different rates wrt the internal dof.

• We start from the factorized expression for Z (T )

Z (T ) =

∫ T/d−1∏
i=0

D3[Vid ]T d [V(i+1)d ,Vid ] , with

T d [Vx0+d ,Vx0 ] = 〈Vx0+d |T̂ d |Vx0〉

and by introducing

(T−)d [Vx0+d ,Vx0 ] =
1

2

{
T d [Vx0+d ,Vx0 ]− T d [Vx0+d ,V ℘

x0
]
}

we generalize it to Z−/Z .
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• The basic quantity to be computed for each sub-lattice of time extent
d with Dirichlet boundary conditions is the ratio of partition functions

T d
[
V ℘

x0+d ,Vx0

]
T d

[
Vx0+d ,Vx0

]
The product (over the thick-slices) of a simple linear function of that
is then integrated numerically on the boundary configurations Vx0=id .

• We need O((L/a)3) MC simulations to estimate the ratio above. We
have a V 2 = (L/a)6 algorithm but we get rid of the exponential (in
time) degradation of the signal, if we choose d ≥ 1/Tc , such that the
ratio above is of the right size O(e−MG−d) and its fluctuations are
reduced to the same level.
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Results (Parity only)

Wilson action β = 5.7 (a ' 0.17 fm ) and O(50) meas at each T/a.
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• The algorithm works as expected. We see a clear signal up to a
separation of about 3 fm.

• There is no strong dependence of the results from L for
1.4 fm < L < 2 fm (⇒ negligible “torelon” contribution)

• However, by using parity only it is difficult to correctly identify the
dominating state. For example, a rather light parity odd state (maybe
lighter than the lightest 0+− glueball) could be

1√
2

(
|0++, ~p〉 − |0++,−~p〉

)
, |~p| = 2π/L

• We want to consider the lattice YM symmetry groups

C and P, g = 2
spatial translations, g = L3

central charge conjugations, Z 3
3 , g = 27

spatial rotations, octahedral group, g = 24
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Fixing an irreducible representation (quantum numbers) [DM and Giusti, to appear]

• The phase space of the theory can be factorized into regular
representations of the group. In the partition function

Z (T ) = Tr
[
T̂T

]
one inserts the identity I written as

I =
1

g

g∑
i=1

∫
D3[V ]|V Γi 〉〈V Γi |

eg on the boundaries of our thick-slices.

• Then group theory tells us how to project on an irreducible
representation µ

P̂(µ) =
nµ

g

g∑
i=1

χ
(µ)
i

∗
Γ̂i
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• So, one has to compute

T d
[
V Γi

x0+d ,Vx0

]
T d

[
Vx0+d ,Vx0

] , i = 1 . . . g

and then form linear combinations of them.

For example: The relative contribution of states with momentum ~p in the
system with Dirichlet bc is (P̂(~x) representing translations by ~x)

(T~p)d
[
Vx0+d ,Vx0

]
T d

[
Vx0+d ,Vx0

] =
1√
L3

∑
~x

e−i~p·~x
T d

[
V

P(~x)
x0+d ,Vx0

]
T d

[
Vx0+d ,Vx0

]
We will use this setup to extract the mass of the lightest 0++ glueball
through the dispersive relation. By selecting non-zero momentum we get
rid of the vacuum.
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Results for the dispersion relation (fixing in addition C parity to be even)

β = 5.7, L/a = 8
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Conclusions and outlook

• In the YM theory the noise to signal problem can be solved by
enforcing the propagation in time of states with the desired quantum
numbers only.

• We have shown that all quantum numbers can be fixed in this
approach.

• We are now exploring the stochastic projection on the singlet
component (eg zero momentum in order to avoid another L3 factor in
the scaling of the algorithm).

• In the near future we will also concentrate on the 0++ and 2++

glueball masses.
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