Electromagnetic corrections to light hadrons masses

Antonin Portelli

Preliminary work based on a subset of BMW collaboration QCD ensembles

Centre de Physique Théorique, Marseille, France

17th of June 2010 - Lattice 2010 International Symposium

Isospin symmetry is broken because :

	u	d
Mass	1.5 to $3.3~{ m MeV}$	3.5 to $6~{ m MeV}$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

Isospin symmetry is broken because :

• up and down quark masses are differents (strong breaking)

	u	d
Mass	1.5 to $3.3~{ m MeV}$	3.5 to $6~{ m MeV}$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

Isospin symmetry is broken because :

- up and down quark masses are differents (strong breaking)
- up and down quark electric charges are differents (EM breaking)

	u	d
Mass	1.5 to $3.3~{ m MeV}$	3.5 to $6~{ m MeV}$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

2 / 18

Isospin symmetry breaking

Isospin symmetry is broken because :

- up and down quark masses are differents (strong breaking)
- up and down quark electric charges are differents (EM breaking)

	u	d
Mass	1.5 to $3.3~{ m MeV}$	3.5 to $6~{ m MeV}$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

This breaking implies mass splittings in isospin multiplets.

Isospin symmetry is broken because :

- up and down quark masses are differents (strong breaking)
- up and down quark electric charges are differents (EM breaking)

	u	d
Mass	1.5 to $3.3~{ m MeV}$	3.5 to $6~{ m MeV}$
Charge	$\frac{2}{3}e$	$-\frac{1}{3}e$

This breaking implies **mass splittings** in isospin multiplets. Mass splitting allows crucial processes like **neutron** β **decay**.

Dashen's theorem

Dashen's theorem :

$$\Delta_{\rm EM} M_K^2 = \Delta_{\rm EM} M_\pi^2 + \mathcal{O}(\alpha_{\rm e}^2, \alpha_{\rm e} m_s)$$

with :

$$\Delta_{\rm EM} M_P^2 = (M_{P^+}^2 - M_{P^0}^2)_{m_u = m_d}$$

This result is useful to compute light quark masses.

Dashen's theorem

Dashen's theorem :

$$\Delta_{\rm EM} M_K^2 = \Delta_{\rm EM} M_\pi^2 + \mathcal{O}(\alpha_{\rm e}^2, \alpha_{\rm e} m_s)$$

with :

$$\Delta_{\rm EM} M_P^2 = (M_{P^+}^2 - M_{P^0}^2)_{m_u = m_d}$$

This result is useful to compute light quark masses.

How large are the corrections ?

$$\Delta_A D = \Delta_{\rm EM} M_K^2 - \Delta_{\rm EM} M_\pi^2$$
$$\Delta_R D = \frac{\Delta_{\rm EM} M_K^2}{\Delta_{\rm EM} M_\pi^2} - 1$$

Dashen's theorem corrections

	$\Delta_A D \ ({ m MeV}^2)$	$\Delta_R D$	
logy	1230	0.80	[Donoghue'1993]
	1300 ± 400	1.02 ± 0.30	[Bijnens'1993]
ienc	360	0.26	[Baur'1995]
phenom	1060 ± 320	0.87 ± 0.39	[Bijnens'1996]
	1080	0.68	[Gao'1997]
	1070	0.74	[Bijnens'2007]
lattice	526	0.39	[Duncan'1996]
	340 ± 92	0.30 ± 0.08	[RBC'2007]
	1250 ± 550	?	[MILC'2008]

Electromagnetism on \mathbb{T}^4

Electromagnetic field generated by a static point charge cannot be made periodic and continuous.

Electromagnetism on \mathbb{T}^4

On \mathbb{T}^4 , the Maxwell-Gauss equation:

$$\partial_{\mu}F_{\mu\nu} = j_{\nu}$$

imposes global electric neutrality :

$$Q_{\text{total}} = \int_{\mathbb{T}^3} \mathrm{d}^3 \mathbf{x} \, j_0(x) = \int_{\mathbb{T}^3} \mathrm{d}^3 \mathbf{x} \, \partial_k F_{k0}(x) = 0$$

Electromagnetism on \mathbb{T}^4

On \mathbb{T}^4 , the Maxwell-Gauss equation:

$$\partial_{\mu}F_{\mu\nu} = j_{\nu}$$

imposes global electric neutrality :

$$Q_{\text{total}} = \int_{\mathbb{T}^3} \mathrm{d}^3 \mathbf{x} \, j_0(x) = \int_{\mathbb{T}^3} \mathrm{d}^3 \mathbf{x} \, \partial_k F_{k0}(x) = 0$$

A possible solution : modify Maxwell equations

$$\partial_{\mu}F_{\mu\nu} = j_{\nu} - \frac{1}{V}L_{\nu}c_{\nu} \quad \text{with} \quad c_{\nu} \doteq \int_{\mathbb{T}^3} \mathrm{d}^3x_{\nu}^{\perp}j_{\nu}(x)$$

Electromagnetism on \mathbb{T}^4

• Lagrangian formulation :

$$\mathscr{L}_{\text{Maxwell}}^{(\text{F})}[A](c) \doteq \mathscr{L}_{\text{Maxwell}}[A] + \frac{L_{\mu}}{V} c_{\mu} A_{\mu}$$

Electromagnetism on \mathbb{T}^4

• Lagrangian formulation :

$$\mathscr{L}_{\text{Maxwell}}^{(\text{F})}[A](c) \doteq \mathscr{L}_{\text{Maxwell}}[A] + \frac{L_{\mu}}{V} c_{\mu} A_{\mu}$$

• New Euler-Lagrange equation :

$$\hat{A}_{\mu}(0) = \int_{\mathbb{T}^4} \mathrm{d}^4 x \, A_{\mu}(x) = 0$$

7 / 18

Electromagnetism on \mathbb{T}^4

• Lagrangian formulation :

$$\mathscr{L}_{\text{Maxwell}}^{(F)}[A](c) \doteq \mathscr{L}_{\text{Maxwell}}[A] + \frac{L_{\mu}}{V} c_{\mu} A_{\mu}$$

• New Euler-Lagrange equation :

$$\hat{A}_{\mu}(0) = \int_{\mathbb{T}^4} \mathrm{d}^4 x \, A_{\mu}(x) = 0$$

• Gauge symmetry is still conserved.

Electromagnetism on \mathbb{T}^4

• Electromagnetic field is now periodic and continuous.

Electromagnetism on \mathbb{T}^4

- Electromagnetic field is now periodic and continuous.
- In a large volume compared to relevant distances, physics is almost the same as in infinite volume.

To avoid photon self-interactions, electromagnetism is formulated on the lattice in its non-compact form [Duncan'1996] :

To avoid photon self-interactions, electromagnetism is formulated on the lattice in its non-compact form [Duncan'1996] :

• Replace derivatives by finite differences :

$$\partial_{\mu}f(x) = f(x + \hat{\mu}) - f(x)$$

To avoid photon self-interactions, electromagnetism is formulated on the lattice in its non-compact form [Duncan'1996] :

• Replace derivatives by finite differences :

$$\partial_{\mu}f(x) = f(x+\hat{\mu}) - f(x)$$

• Impose finite volume and gauge conditions :

$$\begin{array}{rcl} \hat{A}_{\mu}(0) &=& 0 \\ \forall p_0 \neq 0, \quad \hat{A}_0(p_0, \mathbf{0}) &=& 0 \\ \forall p, \quad \widetilde{p}_i \hat{A}_i(p) &=& 0 \end{array} \text{ with } \widetilde{p}_{\mu} = 2\sin\left(\frac{p_{\mu}}{2}\right)$$

To avoid photon self-interactions, electromagnetism is formulated on the lattice in its non-compact form [Duncan'1996] :

• Replace derivatives by finite differences :

$$\partial_{\mu}f(x) = f(x+\hat{\mu}) - f(x)$$

• Impose finite volume and gauge conditions :

$$\begin{array}{rcl} \hat{A}_{\mu}(0) &=& 0 \\ \forall p_0 \neq 0, \quad \hat{A}_0(p_0, \mathbf{0}) &=& 0 \\ \forall p, \quad \widetilde{p}_i \hat{A}_i(p) &=& 0 \end{array} \text{ with } \widetilde{p}_{\mu} = 2\sin\left(\frac{p_{\mu}}{2}\right)$$

• Boltzmann weight $e^{-S_{\text{Maxwell}}^{(\text{DF})}[A]}$ is normal. Electromagnetic fields are simple and cheap to generate.

Numerical check

10 / 18

Lattice QCD+(quenched)QED

• $N_f = 2 + 1$ QCD simulations with Lüscher-Weisz gauge action, tree level O(a)-improved Wilson fermions and two steps of HEX smearing.

11 / 18

Lattice QCD+(quenched)QED

- $N_f = 2 + 1$ QCD simulations with Lüscher-Weisz gauge action, tree level O(a)-improved Wilson fermions and two steps of HEX smearing.
- At quark propagator computation time, we phase SU(3) links using an electromagnetic field A_{μ} randomly generated according to $e^{-S^{\rm (DF)}_{\rm Maxwell}[A]}$:

 $U_{\mu} \longmapsto \exp(iQ_q e A_{\mu})U_{\mu}$

Lattice QCD+(quenched)QED

- $N_f = 2 + 1$ QCD simulations with Lüscher-Weisz gauge action, tree level O(a)-improved Wilson fermions and two steps of HEX smearing.
- At quark propagator computation time, we phase SU(3) links using an electromagnetic field A_{μ} randomly generated according to $e^{-S_{\text{Maxwell}}^{(\text{DF})}[A]}$:

$$U_{\mu} \longmapsto \exp(iQ_q e A_{\mu})U_{\mu}$$

• Thus, simulation is **quenched** in QED.

Conclusion

Mass isospin tuning

With Wilson fermions :

$$m_q = (m_q)_{\alpha = 0} + O\left(Q_q^2 \frac{\alpha}{a}, Q_q^2 \alpha \log(a)\right)$$

With Wilson fermions :

$$m_q = (m_q)_{\alpha=0} + O\left(Q_q^2 \frac{\alpha}{a}, Q_q^2 \alpha \log(a)\right)$$

With naive bare valence masses equal to the bare sea masses :

With Wilson fermions :

$$m_q = (m_q)_{\alpha = 0} + O\left(Q_q^2 \frac{\alpha}{a}, Q_q^2 \alpha \log(a)\right)$$

With naive bare valence masses equal to the bare sea masses :

•
$$m_u^{\text{val}} \neq m_d^{\text{val}}$$

With Wilson fermions :

$$m_q = (m_q)_{\alpha=0} + O\left(Q_q^2 \frac{\alpha}{a}, Q_q^2 \alpha \log(a)\right)$$

With naive bare valence masses equal to the bare sea masses :

- $m_u^{\text{val}} \neq m_d^{\text{val}}$
- $\bullet \ m_q^{\rm val} \neq m_q^{\rm sea}$

With Wilson fermions :

$$m_q = (m_q)_{\alpha = 0} + O\left(Q_q^2 \frac{\alpha}{a}, Q_q^2 \alpha \log(a)\right)$$

With naive bare valence masses equal to the bare sea masses :

- $m_u^{\text{val}} \neq m_d^{\text{val}}$
- $\bullet \ m_q^{\rm val} \neq m_q^{\rm sea}$

Considering the parametrization :

$$m_u^{\text{val},0} = m_u^{\text{sea},0} + 4\delta_c, \quad m_d^{\text{val},0} = m_d^{\text{sea},0} + \delta_c, \quad m_s^{\text{val},0} = m_s^{\text{sea},0} + \delta_c$$

we search a value of δ_c where mass isospin symmetry is restored.

Going to the physical point

To compute the physical value f^ϕ of a quantity f we extrapolate it by a Taylor expansion in $M^2_{\pi^+}$:

$$f(M_{\pi^+}^2) = f^{\phi} \left[1 + \sum_{k=0}^n c_k (M_{\pi^+}^2 - M_{\pi^+}^{\phi \, 2})^k \right]$$

Going to the physical point

To compute the physical value f^ϕ of a quantity f we extrapolate it by a Taylor expansion in $M^2_{\pi^+}$:

$$f(M_{\pi^+}^2) = f^{\phi} \left[1 + \sum_{k=0}^n c_k (M_{\pi^+}^2 - M_{\pi^+}^{\phi \, 2})^k \right]$$

Extrapolated quantities are :

$$M_{\pi^+}^2, \ \Delta M_{\pi}^2, \ M_{K^0}^2, \ M_{K^+}^2 \text{ and } \Delta M_K^2$$

Conclusion

QCD configurations

The following configurations have been analyzed :

β	m_{ud}^0	m_s^0	size	$N_{\rm conf}$	M_{π} (MeV)	$M_{\pi}L$
3.31	-0.08500	-0.04	32×16^3	218	420	8.1
3.31	-0.09300	-0.04	48×24^3	128	300	8.6
3.31	-0.09530	-0.04	48×24^3	210	250	7.2
3.31	-0.09756	-0.04	48×24^3	130	200	5.8

 $a^{-1} \simeq 1697 \text{ MeV} = 0.11628 \text{ fm}$ and $m_s \simeq m_s^{\phi}$ e = 0.302822

Chiral extrapolation

Electromagnetic corrections to light hadrons masses

16 / 18

Conclusion

Preliminary results

At
$$M_{\pi^+} = M^{\phi}_{\pi^+} = 139.57018 \text{ MeV}$$
 :

M_{π^0}	=	$134.5\pm1.1~{\rm MeV}$
$\Delta_{\rm EM} M_{\pi}$	=	$5.1\pm1.1~{\rm MeV}$
$\Delta_{\rm EM} M_\pi^2$	=	$1380\pm50~{\rm MeV^2}$
M_{K^+}	=	$501.3\pm2.0~{\rm MeV}$
M_{K^0}	=	$499.0\pm2.0~{\rm MeV}$
$\Delta_{\rm EM} M_K$	=	$2.2\pm0.2~{\rm MeV}$
$\Delta_{\rm EM} M_K^2$	=	$2200\pm180~{\rm MeV^2}$
$\Delta_A D$	=	$830\pm180~{\rm MeV^2}$
$\Delta_R D$	=	0.60 ± 0.14

Conclusion & perspectives

• We included quenched EM effects in the calculation of light pseudoscalar meson masses.

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.
- Different chiral forms must be tried (*e.g.* χ PT).

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.
- Different chiral forms must be tried (e.g. χ PT).
- Need to vary m_s , β and L to interpolate results in m_s and to extrapolate them to the continuum and infinite volume limits.

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.
- Different chiral forms must be tried (e.g. χ PT).
- Need to vary m_s , β and L to interpolate results in m_s and to extrapolate them to the continuum and infinite volume limits.
- Systematics error must be evaluated.

18 / 18

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.
- Different chiral forms must be tried (e.g. χ PT).
- Need to vary m_s , β and L to interpolate results in m_s and to extrapolate them to the continuum and infinite volume limits.
- Systematics error must be evaluated.
- Investigate EM effects in other hadronic observables.

Conclusion & perspectives

- We included quenched EM effects in the calculation of light pseudoscalar meson masses.
- We obtained preliminary results in the $m_u = m_d$ limit with one β , one m_s and a Taylor expansion to physical M_{π^+} .
- Results obtained are consistent with phenomenology.
- Different chiral forms must be tried (e.g. χ PT).
- Need to vary m_s , β and L to interpolate results in m_s and to extrapolate them to the continuum and infinite volume limits.
- Systematics error must be evaluated.
- Investigate EM effects in other hadronic observables.

Thank you for listening !

