N, Δ and Ω excited state spectra in $N_f = 2 + 1 \text{ QCD}$

* Subcollaboration:

J. M. Bulava, R. G. Edwards, E. Engelson, B. Joó, H.-W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace

- arXiv:1004.5072
- Submitted to Physical Review D
- Long-term goal: Solve QCD to determine the mass spectrum of QCD: baryons, mesons, hybrids, ···

Lattice parameters

- $N_f = 2+1 \text{ QCD}$ (PRD 79, 034502)
 - Gauge action: Symanzik-improved
 - Fermion action: Clover-improved Wilson
- Anisotropic: $a_s = 0.122$ fm, $a_t = 0.035$ fm

ensemble	1	2	3
m_ℓ	0840	0830	0808
m_s	0743	0743	0743
Volume	$16^3 imes 128$	$16^{3} imes \ 128$	$16^3 imes 128$
$N_{ m cfgs}$	344	570	481
$t_{ m sources}$	4	4	4
m_{π}	0.0691(6)	0.0797(6)	0.0996(6)
m_K	0.0970(5)	0.1032(5)	0.1149(6)
m_{Ω}	0.2951(22)	0.3040(8)	0.3200(7)
m_{π} (MeV)	392(4)	438(3)	521(3)

Analyses for $N\text{, }\Delta$ and Ω spectra

- Many interpolating field operators in each IR of octahedral group: Prune to ≈ 10
- "Distillation" technology for smearing: Use 32 eigenvectors of Laplacian
- Matrices of correlation functions: Diagonalize them at $t^* \approx 8$, Fix eigenvectors at t^* .
- Diagonal correlation functions: Fit them & extract six energies
- Lattice spectra: Compare patterns with experimental resonance spectra.

Limitations

- Three-quark operators:
 - No multiparticle operators
 - Scant evidence for scattering states
- One volume: No extrapolations or δ 's
- m_{π} large: Energies generally are high.
- Spins: $J^P = \frac{5}{2}^-$ seen, higher spins ambiguous.

Computational Resources

- USQCD allocations
- Jefferson Laboratory clusters
- Fermi National Accelerator Lab clusters
- and the Chroma software system (Edwards *et al.*)

Thanks to all for their support.

HADRON SPECTRUM COLLABORATIONMatrices of correlation functions& smearing of quark fields

$$C_{ij}(t,t') = \sum_{\mathbf{x}\mathbf{y}} \left\langle B_i(\mathbf{x},t) B_j^{\dagger}(\mathbf{y},t') \right\rangle$$
$$B_i(\mathbf{x},t) = C_i^{\alpha\beta\gamma} \epsilon^{abc} q_{\alpha}^{af_1}(\mathbf{x},t) q_{\beta}^{bf_2}(\mathbf{x},t) q_{\gamma}^{cf_3}(\mathbf{x},t).$$

Smearing: Project to eigenvectors of Laplacian (PRD 80, 054506)

$$egin{aligned} q^a_lpha(\mathbf{x},t) &\longrightarrow \sum_k v^{(k)}_{a\mathbf{x}} \widetilde{q}^{(k)}_lpha(t). \ &ig(-
abla^2)^{ab}_{\mathbf{x}\mathbf{y}} v^{(k)}_{b,\mathbf{y}} = \lambda_k v^{(k)}_{a\mathbf{x}} \end{aligned}$$

$$C_{ij}(t,t') = \Phi^{\alpha\beta\gamma}_{i,k\ell m}(t) \left\langle \widetilde{q}^{(k)}_{\alpha}(t)\widetilde{q}^{(\ell)}_{\beta}(t)\widetilde{q}^{(m)}_{\gamma}(t) \right.$$
$$\left. \overline{\widetilde{q}}^{(\bar{k})}_{\bar{\alpha}}(t')\overline{\widetilde{q}}^{(\bar{\ell})}_{\bar{\beta}}(t')\overline{\widetilde{q}}^{(\bar{m})}_{\bar{\gamma}}(t') \right\rangle \left. \Phi^{\bar{\alpha}\bar{\beta}\bar{\gamma}\dagger}_{j,\bar{k}\bar{\ell}\bar{m}}(t') \right.$$

Determine energies

Calculate eigenvectors at $t^* = t_0 + 1$

$$\overline{C}(t^*)V(t^*) = \overline{C}(t_0)V(t^*)\Lambda(t^*)$$

Rotate matrices to fixed basis, calculate diagonal elements

$$\widetilde{\lambda}_n(t) = \left(V^{\dagger}(t^*) C(t) V(t^*) \right)_{nn}$$

Fit diagonal correlation elements

$$\lambda_{fit}(t) = (1 - A)e^{-E(t - t_0)} + Ae^{-E'(t - t_0)}$$

Extract E.

HADRON SPECTRUM COLLABORATION Subduction of J to \mathcal{O}_D

		Dimen		J		
IR	Parity	sion	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{7}{2}$
G_{1g}	+1	2	1			1
H_g	+1	4		1	1	1
G_{2g}	+1	2			1	1
G_{1u}	-1	2	1			1
H_u	-1	4		1	1	1
G_{2u}	-1	2			1	1

- Spin $\frac{1}{2}$: Isolated G_1 state,
- Spin $\frac{3}{2}$: isolated H state.
- Spin $\frac{5}{2}$: degenerate G_2 and H states
- Spin $\frac{7}{2}$: degenerate G_1 , H and G_2 states

Summary

- 6 lowest energy N, Δ and Ω states in each IR for $m_{\pi} = 392(4)$, 438(3) and 521(3) MeV.
- First excited baryon spectrum based on $N_f = 2+1$ QCD using anisotropic lattices
- Patterns of lowest energies are similar to the patterns of lowest physical resonance states.
- Good evidence for $J^P = \frac{5}{2}^-$ state.
- Quark field smearing using lowest eigenmodes of Laplace operator works well
- Program is on track to produce reasonable spectra. Next steps: lower m_{π} , larger and more volumes, multiparticle operators and operators subduced from continuum *J*'s.

"This is not the end. It is not even the beginning of the end. But, perhaps, it is the end of the beginning"