## The Imbalanced Fermi Gas at Unitarity

Olga Goulko in collaboration with Matthew Wingate

DAMTP, University of Cambridge

18 June 2010


## What is a Fermi gas?

A Fermi gas is a dilute system of fermions

## Examples:

- electrons inside a metal
- quark-gluon plasma in the inner core of a neutron star
- atomic gas e.g. of ${ }^{40} \mathrm{~K}$ or ${ }^{6} \mathrm{Li}$ atoms ( $\Rightarrow$ experiment!)

low temperature: quantum phenomena become important identical fermions $\Rightarrow$ no s-wave scattering $\Rightarrow$ ideal gas model


## What is a unitary Fermi gas?

Fermions of two species $\Rightarrow$ interactions become important Low-energy interactions are characterised by the scattering length a


## What is interesting about unitarity?

- System is dilute (range of potential <<interparticle distance) and strongly interacting (interparticle distance $\ll$ scattering length) at the same time
- No length scales associated with interactions $\Rightarrow$ universal behaviour
- Only relevant parameters: temperature and density
- High-temperature superfluidity

| neutron star | $T_{c}=10^{6} \mathrm{~K}$ | $T_{c}=10^{-5} T_{F}$ |
| :--- | :--- | :--- |
| high- $T_{c}$ superconductor | $T_{c}=10^{2} \mathrm{~K}$ | $T_{c}=10^{-3} T_{F}$ |
| atomic Fermi gas | $T_{c}=10^{-7} \mathrm{~K}$ | $T_{c}=10^{-1} T_{F}$ |

- Experimental data available


## What is interesting about unitarity?

Strong interactions $\Rightarrow$ No small parameter for perturbation theory No exact theory for Fermi gas at unitarity!

What to do?

- Approximate schemes (e.g. mean-field theory) involve uncontrolled approximations
- Numerical Methods
$\Longrightarrow$ Good results for critical temperature and other quantities

Our project: Calculating the critical temperature of the imbalanced unitary Fermi gas with the Determinant Diagrammatic Monte Carlo (DDMC) algorithm [Burovski et al. cond-mat/0605350v2]

## The Fermi-Hubbard model

Simplest lattice model for two-particle scattering

- Non-relativistic fermions
- Contact interaction between spin up and spin down
- On-site attraction $U<0$ tuned to describe unitarity
- Grand canonical ensemble
- Finite 3D simple cubic lattice, periodic boundary conditions
- Continuum limit can be taken by extrapolation to zero density

$$
H=\sum_{\mathbf{k}, \sigma}\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+U \sum_{\mathbf{x}} c_{\mathbf{x} \uparrow}^{\dagger} c_{\mathbf{x} \uparrow} c_{\mathbf{x} \downarrow}^{\dagger} c_{\mathbf{x} \downarrow},
$$

where $\epsilon_{\mathbf{k}}=\frac{1}{m} \sum_{j=1}^{3}\left(1-\cos k_{j}\right)$ is the discrete FT of $\frac{-\nabla^{2}}{2 m}$.

## Finite temperature formalism

Grand canonical partition function in imaginary time interaction picture: $Z=$ Tre $^{-\beta H}$ :


## Sign problem!

The diagrams of each order can be written as the product of two matrix determinants [Rubtsov et al. cond-mat/0411344]

$$
Z=\sum_{p, S_{p}}(-U)^{p} \operatorname{det} \mathbf{A}^{\uparrow}\left(S_{p}\right) \operatorname{det} \mathbf{A}^{\downarrow}\left(S_{p}\right)
$$

where $S_{p}$ is the vertex configuration and the matrix entries are free (finite temperature) propagators

## Order parameter of the phase transition

Anomalous correlations in the superfluid phase:
$\Rightarrow$ Introduce pair annihilation/creation operators $P$ and $P^{\dagger}$ :

$$
P(\mathbf{x}, \tau)=c_{\mathbf{x} \uparrow}(\tau) c_{\mathbf{x} \downarrow}(\tau) \quad \text { and } \quad P^{\dagger}\left(\mathbf{x}^{\prime}, \tau^{\prime}\right)=c_{\mathbf{x}^{\prime} \uparrow}^{\dagger}\left(\tau^{\prime}\right) c_{\mathbf{x}^{\prime} \downarrow}^{\dagger}\left(\tau^{\prime}\right)
$$

At the critical point the correlation function
$G_{2}\left(\mathbf{x} \tau ; \mathbf{x}^{\prime} \tau^{\prime}\right)=\left\langle\mathbf{T}_{\tau} P(\mathbf{x}, \tau) P^{\dagger}\left(\mathbf{x}^{\prime}, \tau^{\prime}\right)\right\rangle=\frac{1}{Z} \operatorname{Tr} \mathbf{T}_{\tau} P(\mathbf{x}, \tau) P^{\dagger}\left(\mathbf{x}^{\prime}, \tau^{\prime}\right) e^{-\beta H}$
is proportional to $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{-(1+\eta)}$ as $\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \rightarrow \infty$
(in 3 spatial dimensions, where $\eta \approx 0.038$ for $\mathrm{U}(1)$ universality class)

## Order parameter of the phase transition

$\Rightarrow$ the rescaled integrated correlation function

$$
R(L, T)=L^{1+\eta} \overline{G_{2}\left(\mathbf{x} \tau ; \mathbf{x}^{\prime} \tau^{\prime}\right)}
$$

becomes independent of lattice size at the critical point
Finite-size corrections:

$$
R(L, T)=\underbrace{\left(f_{0}+f_{1}\left(T-T_{c}\right) L^{1 / \nu_{\xi}}+\ldots\right)}_{\text {universal scaling function }} \underbrace{\left(1+c L^{-\omega}+\ldots\right)}_{\text {finite-size scaling }}
$$

- Critical exponents for the $\mathrm{U}(1)$ universality class: $\nu_{\xi} \approx 0.67$ and $\omega \approx 0.8$
- Non-universal constants to be determined: $T_{c}, f_{0}, f_{1}, c$ (to first order)


## Order parameter of the phase transition

Example: fit of the rescaled integrated correlator $R(L, T)$

(data taken at 4 different temperatures and 4 different lattice sizes)

## Autocorrelations

The original worm algorithm achieved high acceptance ratios, but at the cost of strongly autocorrelated results:


Worm updates


Diagonal updates

## Alternative updates

Alternative set of updates: both weak autocorrelations and high acceptance rates [Goulko and Wingate, arXiv:0910.3909].


Comparison between diagonal setup (red circles) and alternative worm setup (blue squares) at low filling factor

## The balanced Fermi gas



An interacting system with equal number of spin up and spin down fermions $\left(\mu_{\uparrow}=\mu_{\downarrow}\right)$

The imbalanced Fermi gas


Interactions are suppressed in presence of an imbalance $\left(\mu_{\uparrow} \neq \mu_{\downarrow}\right)$

## The imbalanced Fermi gas

Thermal probability distribution:

$$
\rho\left(S_{p}\right)=\frac{1}{Z}(-U)^{p} \operatorname{det} \mathbf{A}^{\uparrow}\left(S_{p}\right) \operatorname{det} \mathbf{A}^{\downarrow}\left(S_{p}\right)
$$

Sign problem: $\mu_{\uparrow} \neq \mu_{\downarrow} \Rightarrow \operatorname{det} \mathbf{A}^{\uparrow} \operatorname{det} \mathbf{A}^{\downarrow} \neq|\operatorname{det} \mathbf{A}|^{2}$
Sign quenched method: write $\rho\left(S_{p}\right)=\left|\rho\left(S_{p}\right)\right| \operatorname{sign}\left(S_{p}\right)$ and use $\left|\rho\left(S_{p}\right)\right|$ as the new probability distribution

$$
\langle X\rangle_{\rho}=\frac{\sum X\left(S_{p}\right) \rho\left(S_{p}\right)}{\sum \rho\left(S_{p}\right)}=\frac{\sum X\left(S_{p}\right)\left|\rho\left(S_{p}\right)\right| \operatorname{sign}\left(S_{p}\right)}{\sum\left|\rho\left(S_{p}\right)\right| \operatorname{sign}\left(S_{p}\right)}=\frac{\langle X \operatorname{sign}\rangle_{|\rho|}}{\langle\operatorname{sign}\rangle_{|\rho|}}
$$

Problems can arise if $\langle\operatorname{sign}\rangle \approx 0$
But for the unitary Fermi gas $\langle\operatorname{sign}\rangle_{|\rho|} \approx 1$ for a wide range of $\Delta \mu$

## The imbalanced Fermi gas

Schematic plot of the average sign at the critical point and at the largest lattice size used


## Results

Reproducing the critical temperature in the balanced case

$\nu \rightarrow 0$ corresponds to the continuum limit

## Results

The chemical potential in the balanced case

$\nu \rightarrow 0$ corresponds to the continuum limit

## Results

The energy per particle in the balanced case

$\nu \rightarrow 0$ corresponds to the continuum limit

## Results

Relationship between $\Delta \mu / E_{F}=\left|\mu_{\uparrow}-\mu_{\downarrow}\right| / E_{F}$ and $\delta \nu / \nu=\left|\nu_{\uparrow}-\nu_{\downarrow}\right| /\left(\nu_{\uparrow}+\nu_{\downarrow}\right)$


## Results

Surface fit of the critical temperature as a function of filling factor $\nu^{1 / 3}$ and imbalance $h=\Delta \mu / E_{F}$.

- At fixed imbalance the critical temperature is a linear function of $\nu^{1 / 3}$, with slope $\alpha(h)$.
- $T_{c}(h)$ and $\alpha(h)$ viewed as functions of the imbalance $h$ are analytic and can thus be Taylor expanded.
- Due to symmetry in $h$ all odd powers in the Taylor expansion of $T_{c}(h)$ have to vanish.

Hence the fitted function takes the form

$$
T_{c}(\nu, h)=T_{c}(h)+\alpha(h) \nu^{1 / 3}
$$

We will expand the functions $T_{c}(h)$ and $\alpha(h)$ to second order in $h$.

## Results

## 1/3 <br> Surface fit of the critical temperature



## Conclusions

- Lattice Field Theory is a useful tool for studying strongly interacting systems in condensed matter physics
- The DDMC algorithm can be applied to calculate the critical temperature of the Fermi gas at unitarity
- Result for the balanced case: $T_{c} / E_{F}=0.1807(55) E_{F}$
- Imbalanced case with the sign quenched method

Thank you!

## Bonus slides

## Bonus slides: Diagrammatic Monte Carlo

- sampling via a Monte Carlo Markov chain process
- the configuration space is extended $\rightarrow$ worm vertices

- physical picture: at low densities multi-ladder diagrams dominate
- updates designed to favour prolonging existing vertex chains


## Bonus slides: The worm updates

Updates only concerning the worm vertices:


Worm creation/annihilation: insert/remove the pair $P(\mathbf{x}, \tau), \quad P^{\dagger}\left(\mathbf{x}^{\prime}, \tau^{\prime}\right) \quad$ into/from the configuration


Worm shift: Shift the $P^{\dagger}\left(\mathbf{x}^{\prime}, \tau^{\prime}\right)$ vertex to other coordinates

## Bonus slides: The worm updates

Updates of the regular 4-point vertices: adding/removing a 4-point vertex (changes the diagram order)

- Diagonal version: add or remove a random vertex
- Alternative using worm: move the $P(\mathbf{x}, \tau)$ vertex to another position and insert a 4-point vertex at its old position.
$\Rightarrow$ choose new coordinates of $P$ very close to its initial coordinates
$\Rightarrow$ the removal update always attempts to remove the nearest neighbour of $P$



## Bonus slides: Alternative updates

Combine the advantages of the diagonal setup (weak autocorrelations) with the ones of the worm setup (high acceptance ratios)

- Choose a random 4-point vertex from the configuration (will act as a worm for this step).
- Addition: add another 4-point vertex on the same lattice site and in some time interval around the worm.
- Removal: remove the nearest neighbour of the worm vertex

This setup still prolongs existing vertex chains, but autocorrelations are reduced since the worm changes with every update.

