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What is a Fermi gas?

A Fermi gas is a dilute system of fermions

Examples:

• electrons inside a metal

• quark-gluon plasma in the inner core of a neutron star

• atomic gas e.g. of 40K or 6Li atoms (⇒ experiment!)

low temperature: quantum phenomena become important
identical fermions ⇒ no s-wave scattering ⇒ ideal gas model



What is a unitary Fermi gas?

Fermions of two species ⇒ interactions become important
Low-energy interactions are characterised by the scattering length a
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What is interesting about unitarity?

• System is dilute (range of potential � interparticle distance)
and strongly interacting (interparticle distance � scattering
length) at the same time

• No length scales associated with interactions ⇒ universal
behaviour

• Only relevant parameters: temperature and density

• High-temperature superfluidity

neutron star Tc = 106K Tc = 10−5TF

high-Tc superconductor Tc = 102K Tc = 10−3TF

atomic Fermi gas Tc = 10−7K Tc = 10−1TF

• Experimental data available



What is interesting about unitarity?

Strong interactions ⇒ No small parameter for perturbation theory

No exact theory for Fermi gas at unitarity!

What to do?

• Approximate schemes (e.g. mean-field theory) involve
uncontrolled approximations

• Numerical Methods
=⇒ Good results for critical temperature and other quantities

Our project: Calculating the critical temperature of the imbalanced
unitary Fermi gas with the Determinant Diagrammatic Monte
Carlo (DDMC) algorithm [Burovski et al. cond-mat/0605350v2]



The Fermi-Hubbard model

Simplest lattice model for two-particle scattering

• Non-relativistic fermions

• Contact interaction between spin up and spin down

• On-site attraction U < 0 tuned to describe unitarity

• Grand canonical ensemble

• Finite 3D simple cubic lattice, periodic boundary conditions

• Continuum limit can be taken by extrapolation to zero density

H =
∑
k,σ

(εk − µ)c†kσckσ + U
∑

x

c†x↑cx↑c
†
x↓cx↓,

where εk = 1
m

∑3
j=1(1− cos kj) is the discrete FT of −∇2

2m .



Finite temperature formalism

Grand canonical partition function in imaginary time interaction
picture: Z = Tre−βH :

Z = 1 + + +− − ± . . .

Sign problem!

The diagrams of each order can be written as the product of two
matrix determinants [Rubtsov et al. cond-mat/0411344]

Z =
∑
p,Sp

(−U)p detA↑(Sp) detA↓(Sp),

where Sp is the vertex configuration and the matrix entries are free
(finite temperature) propagators



Order parameter of the phase transition

Anomalous correlations in the superfluid phase:

⇒ Introduce pair annihilation/creation operators P and P†:

P(x, τ) = cx↑(τ)cx↓(τ) and P†(x′, τ ′) = c†x′↑(τ
′)c†x′↓(τ

′)

At the critical point the correlation function

G2(xτ ; x′τ ′) =
〈
TτP(x, τ)P†(x′, τ ′)

〉
=

1

Z
TrTτP(x, τ)P†(x′, τ ′)e−βH

is proportional to |x− x′|−(1+η) as |x− x′| → ∞
(in 3 spatial dimensions, where η ≈ 0.038 for U(1) universality
class)



Order parameter of the phase transition

⇒ the rescaled integrated correlation function

R(L,T ) = L1+ηG2(xτ ; x′τ ′)

becomes independent of lattice size at the critical point

Finite-size corrections:

R(L,T ) = (f0 + f1(T − Tc)L
1/νξ + . . .)︸ ︷︷ ︸

universal scaling function

(1 + cL−ω + . . .)︸ ︷︷ ︸
finite-size scaling

• Critical exponents for the U(1) universality class:
νξ ≈ 0.67 and ω ≈ 0.8

• Non-universal constants to be determined:
Tc , f0, f1, c (to first order)



Order parameter of the phase transition

Example: fit of the rescaled integrated correlator R(L,T )
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Autocorrelations
The original worm algorithm achieved high acceptance ratios, but
at the cost of strongly autocorrelated results:
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Alternative updates
Alternative set of updates: both weak autocorrelations and high
acceptance rates [Goulko and Wingate, arXiv:0910.3909].
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The balanced Fermi gas

An interacting system with equal number of spin up and spin down
fermions (µ↑ = µ↓)



The imbalanced Fermi gas

Interactions are suppressed in presence of an imbalance (µ↑ 6= µ↓)



The imbalanced Fermi gas

Thermal probability distribution:

ρ(Sp) =
1

Z
(−U)p detA↑(Sp) detA↓(Sp)

Sign problem: µ↑ 6= µ↓ ⇒ detA↑ detA↓ 6= | detA|2

Sign quenched method: write ρ(Sp) = |ρ(Sp)|sign(Sp) and use
|ρ(Sp)| as the new probability distribution

〈X 〉ρ =

∑
X (Sp)ρ(Sp)∑

ρ(Sp)
=

∑
X (Sp)|ρ(Sp)|sign(Sp)∑
|ρ(Sp)|sign(Sp)

=
〈X sign〉|ρ|
〈sign〉|ρ|

Problems can arise if 〈sign〉 ≈ 0

But for the unitary Fermi gas 〈sign〉|ρ| ≈ 1 for a wide range of ∆µ



The imbalanced Fermi gas
Schematic plot of the average sign at the critical point and at the
largest lattice size used
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Results

Reproducing the critical temperature in the balanced case
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Results

The chemical potential in the balanced case
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Results

The energy per particle in the balanced case
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Results
Relationship between ∆µ/EF = |µ↑ − µ↓|/EF and
δν/ν = |ν↑ − ν↓|/(ν↑ + ν↓)
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Results

Surface fit of the critical temperature as a function of filling factor
ν1/3 and imbalance h = ∆µ/EF .

• At fixed imbalance the critical temperature is a linear function
of ν1/3, with slope α(h).

• Tc(h) and α(h) viewed as functions of the imbalance h are
analytic and can thus be Taylor expanded.

• Due to symmetry in h all odd powers in the Taylor expansion
of Tc(h) have to vanish.

Hence the fitted function takes the form

Tc(ν, h) = Tc(h) + α(h)ν1/3

We will expand the functions Tc(h) and α(h) to second order in h.



Results
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Conclusions

• Lattice Field Theory is a useful tool for studying strongly
interacting systems in condensed matter physics

• The DDMC algorithm can be applied to calculate the critical
temperature of the Fermi gas at unitarity

• Result for the balanced case: Tc/EF = 0.1807(55)EF

• Imbalanced case with the sign quenched method



Thank you!



Bonus slides



Bonus slides: Diagrammatic Monte Carlo

• sampling via a Monte Carlo Markov chain process

• the configuration space is extended → worm vertices

• physical picture: at low
densities multi-ladder diagrams
dominate

• updates designed to favour
prolonging existing vertex
chains



Bonus slides: The worm updates

Updates only concerning the worm vertices:

Worm creation/annihilation:
insert/remove the pair
P(x, τ), P†(x′, τ ′) into/from
the configuration

Worm shift: Shift the P†(x′, τ ′)
vertex to other coordinates



Bonus slides: The worm updates

Updates of the regular 4-point vertices: adding/removing a
4-point vertex (changes the diagram order)

• Diagonal version: add or remove a random vertex

• Alternative using worm: move the P(x, τ) vertex to another
position and insert a 4-point vertex at its old position.
⇒ choose new coordinates of P very close to its initial
coordinates
⇒ the removal update always attempts to remove the nearest
neighbour of P



Bonus slides: Alternative updates

Combine the advantages of the diagonal setup (weak
autocorrelations) with the ones of the worm setup (high

acceptance ratios)

• Choose a random 4-point vertex from the configuration (will
act as a worm for this step).

• Addition: add another 4-point vertex on the same lattice site
and in some time interval around the worm.

• Removal: remove the nearest neighbour of the worm vertex

This setup still prolongs existing vertex chains, but autocorrelations
are reduced since the worm changes with every update.


