Pion and
Kaon EM matrix elements

Baum et al.

Introduction

Calculations
Results
Work in
progress
Conclusions

Matrix element of the electromagnetic operator between Kaon and pion states

Baum, Itzhak ${ }^{1}$ Lubicz, Vittorio ${ }^{2}$ Martinelli, Guido ${ }^{3}$ Simula, Silvano ${ }^{2}$

${ }^{1}$ Rome University "La Sapienza"
${ }^{2}$ University of Rome III and INFN - Roma Tre
${ }^{3}$ University of Rome "La Sapienza" and INFN Rome

Villasimius, $15^{\text {th }}$ June, 2010

Outline

Pion and
Kaon EM matrix elements

Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

1 Introduction-Kaon rare decays

2 Calculation of the EM operator matrix element

3 Results

4 Work in progress

5 Conclusions

Kaon rare semileptonic decays as new physics probes

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

Rare Kaon decays have not been detected yet:

$$
B R\left(K_{L} \rightarrow \pi^{0} \ell^{ \pm} \ell^{\mp}\right)_{\exp }<6.6 \cdot 10^{-10}
$$

In the SM they are estimated to be

$$
\begin{gathered}
B R(K \rightarrow \pi e e)_{S M} \sim 1.5 \cdot 10^{-12} \\
B R(K \rightarrow \pi \mu \mu)_{S M} \sim 3 \cdot 10^{-10}
\end{gathered}
$$

New physics can be the leading contribution, mediated through the Electro-magnetic and Chromo-magnetic operators:

$$
\begin{aligned}
& \mathcal{Q}_{E M}^{+}=\bar{s} F_{\mu \nu} \sigma^{\mu \nu} d \\
& \mathcal{Q}_{C M}^{+}=\bar{s} G_{\mu \nu} \sigma^{\mu \nu} G_{\mu \nu} d
\end{aligned}
$$

■ Sensitive to hadronic matrix elements.

Previous work

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in progress

Conclusions

First lattice calculation [Becirevic et al. 2001] of the EM form factor

$$
f_{T}\left(q^{2}=0\right)=0.77 \pm 0.06 \pm 0.03
$$

With the slope in q^{2}

$$
\lambda=1.21 \pm 0.05 \mathrm{GeV}^{-2}
$$

- Quenched ($n_{f}=0$)
- High pion masses $\left(530<m_{\pi}<800 \mathrm{MeV}\right)$
- One lattice size ($\left.a^{-1}=2.7(1) \mathrm{GeV}\right)$

Lattice details

Pion and
Kaon EM
matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

- ETMC lattice QCD simulations [ETMC 0701012, 0911.5061]
- Dynamical flavors: $n_{f}=2$

■ Pion mass range: $270<m_{\pi}<600 \mathrm{MeV}$

- Lattice sizes: $24^{3} \times 48$ and $32^{3} \times 64$

■ Lattice step sizes: $a=0.068,0.085,0.10 \mathrm{fm}$
■ Action is Symanzik tree-level improved with maximally twisted-mass Wilson fermions

■ Non perturbative renormalization in the $\mathrm{RI} / \mathrm{MOM}$ scheme [ETMC 1004.1115]

- 3-point correlators with all-to-all stochastic propagator calculation, increase accuracy
■ Breit momentum frame: $\vec{p}_{K}=\vec{p}, \vec{p}_{\pi}=-\vec{p}$

Electromagnetic form factor calculation

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

$$
\mathcal{Q}_{E M}=\bar{s} \sigma^{\mu \nu} d
$$

The EM form factor is acquired from the EM matrix element by [Becirevic et al. 2001]:

$$
\left\langle\frac{\pi^{0}}{\sqrt{2}}\right| \mathcal{Q}_{E M}\left|K^{0}\right\rangle=i\left(p_{K}^{\mu} p_{\pi}^{\nu}-p_{K}^{\nu} p_{\pi}^{\mu}\right) \frac{\sqrt{2} f_{T}}{m_{K}+m_{\pi}}
$$

To obtain the matrix elements from the 3-point correlators, we look at the lattice times far from the pion and Kaon sources

$$
C_{3}^{K \pi} \rightarrow \frac{\sqrt{Z_{K} Z_{\pi}}}{4 E_{K} E_{\pi}}\left\langle\pi^{0}\right| \mathcal{Q}_{E M}\left|K^{0}\right\rangle e^{-E_{K} t_{x}-E_{\pi}\left(t_{y}-t_{x}\right)}
$$

and use the ratio

$$
\frac{C_{3}^{K \pi} C_{3}^{\pi K}}{C_{2}^{\pi}\left(t_{y}\right) C_{2}^{K}\left(t_{y}\right)} \rightarrow \frac{\left\langle\pi^{0}\right| \mathcal{Q}_{E M}\left|K^{0}\right\rangle^{2}}{16 E_{K} E_{\pi}}
$$

where t_{y} is a fixed point $t_{y}=T / 2$.

Calculations

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in progress

Conclusions

■ Interpolation in momentum to $q^{2}=0$, assuming pole behaviour:

$$
f_{T}\left(q^{2}\right)=\frac{f_{T}(0)}{1-q^{2} \lambda}
$$

■ Interpolation to physical strange mass:

$$
\left(2 m_{K}^{2}-m_{\pi}^{2}\right)_{L A T T} \rightarrow\left(2 m_{K}^{2}-m_{\pi}^{2}\right)_{P H Y S} \propto\left(m_{s}\right)_{P H Y S}
$$

Extrapolation in masses

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

Extrapolation in m_{π}^{2} to physical pion mass $m_{\pi^{0}}=135 \mathrm{MeV}$

- linear $f=A m_{\pi}^{2}+B$

■ quadratic $f=A^{\prime} m_{\pi}^{4}+B^{\prime} m_{\pi}^{2}+C^{\prime}$

- log-linear $f=A^{\prime \prime} m_{\pi}^{2} \ln \left(m_{\pi}^{2}\right)+B^{\prime \prime} m_{\pi}^{2}+C^{\prime \prime}$

- Small finite volume effects

Results

Pion and
Kaon EM matrix elements

Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

Other lattice spacings:

Results

Pion and
Kaon EM matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in
progress
Conclusions

We find (Preliminary results, no systematic effects)

$$
\begin{gathered}
f_{T}\left(q^{2}=0\right)=0.430 \pm 0.066^{\text {stat }} \\
\lambda=1.61 \pm 0.41^{\text {stat }} \mathrm{GeV}^{-2} \text { (slope in } q^{2}, \text { pole fit) }
\end{gathered}
$$

To compare with [Becirevic et al. 2001] (linear fit)

$$
\begin{gathered}
f_{T}(0)=0.77 \pm 0.06 \pm 0.03 \\
\lambda=1.21 \pm 0.05 \mathrm{GeV}^{-2}
\end{gathered}
$$

Results

Pion and
Kaon EM matrix elements

Baum et al.

Introduction

Calculations
Results
Work in
progress
Conclusions

Confronting results for $m_{K}=m_{\pi}$ for similar lattice sizes a

Similar behaviour, difference may be due to:

- Extrapolation from large pion masses

■ Quenching effects

Work in progress

Pion and
Kaon EM
matrix
elements
Baum et al.

Introduction
Calculations
Results
Work in progress

Conclusions

- Electro-magnetic operator $\mathcal{Q}_{E M}^{+}=\bar{s} \sigma^{\mu \nu} d$
- Combined fit for all lattice spacings
- Systematic errors analysis (chiral extrapolation, momentum dependence)
■ Chromo-magnetic operator $\mathcal{Q}_{C M}^{+}=\bar{s} G_{\mu \nu} \sigma^{\mu \nu} d$
- No previous lattice calculation
- Matrix elements calculation
- Renormalization

$$
\mathcal{Q}_{C M}^{\text {renorm }}=Z_{C M}\left(\mathcal{Q}_{C M}^{\text {bare }}+\frac{c}{a} \mathcal{Q}_{S}\right)
$$

- additive - subtraction of mixing with scalar operator
- multiplicative - 1-loop lattice perturbation theory $[\mathrm{H}$. Panagopoulos et al.]

Conclusions

Pion and
Kaon EM matrix elements

■ Previously, single calculation (2001) of the EM operator

- Our calculations were performed for a large range of masses and lattice spacings
■ Higher statistical accuracy achieved
- Values at $q^{2}=0$ differ, may be due to either quenching or smaller pion masses
- Slope in q^{2} is consistent with previous result, but with higher preliminary statistical error
■ Chromo-magnetic operator is work-in-progress

Pion and
Kaon EM matrix elements

Baum et al.

Introduction

Calculations
Results
Work in
progress

Conclusions

Thank you!

Pion and Kaon EM matrix elements
(1. Becirevic, V. Lubicz, G. Martinelli and F. Mescia [SPQcdR Collaboration], Phys. Lett. B 501, 98 (2001) [arXiv:hep-ph/0010349].
© P. Boucaud et al. [ETM Collaboration], Phys. Lett. B 650, 304 (2007) [arXiv:hep-lat/0701012].

R R. Baron et al. [ETM Collaboration], arXiv:0911.5061 [hep-lat].
(i) M. Constantinou et al., arXiv:1004.1115 [hep-lat].

