
Ron Babich (BU) Lattice 2010 – June 18, 2010 1

Attaining multi-teraflops Attaining multi-teraflops
performance for QCD on GPUsperformance for QCD on GPUs

Ronald Babich
Boston University

Lattice 2010 - Villasimius
June 18, 2010

with
Kip Barros, Rich Brower, Mike Clark,

Bálint Joó, and Claudio Rebbi

Ron Babich (BU) Lattice 2010 – June 18, 2010 2

Outline

● A bit about GPUs

● General performance strategies

● Multi-GPU strategy

● Multi-GPU performance results

● Outlook

Ron Babich (BU) Lattice 2010 – June 18, 2010 3

A tale of two processors

Intel Xeon X5680

6 cores (each with 4-wide SSE unit)

1.17 billion transistors

Shared L3 Cache: 12 MB

L1+L2: 6 x (320 KB) = 1920 KB

160 Gflops (SP)

32 GB/s memory bandwidth

up to 288 GB (96 GB is realistic)

NVIDIA GeForce GTX 480

480 cores

3.0 billion transistors

Shared L2 Cache: 768 KB

L1+SM+Reg: 15 x 192 KB = 2880 KB

1345 Gflops (SP)

177 GB/s memory bandwidth

1.5 GB (up to 6 GB in Tesla variant)

“Gulftown” “Fermi”

Ron Babich (BU) Lattice 2010 – June 18, 2010 4

Bandwidth constraints

160 Gflops (SP)

32 GB/s memory bandwidth

1345 Gflops (SP)

177 GB/s memory bandwidth

● In single precision, the Wilson matrix-vector
product has a byte/flop ratio of just over 1
(slightly lower for clover).

● We're entirely constrained by memory bandwidth.
On the GPU, flops are virtually free.

Ron Babich (BU) Lattice 2010 – June 18, 2010 5

GPU memory hierarchy

Ron Babich (BU) Lattice 2010 – June 18, 2010 6

General strategies

● Follow the standard best practices (minimize PCI-E transfers,
pay attention to thread occupancy, ensure memory
coalescing, avoid bank conflicts, avoid partition camping, etc.).

● Reduce memory traffic:

● Reconstruct SU(3) matrices from 8 or 12 real numbers on
the fly.*

● Choose a gamma basis with diagonal.*

● Fix to the temporal gauge.*

● Use multi-precision solvers, including half (16-bit) precision.*

● Take advantage of “kernel fusion.”

● Auto-tune kernel launch parameters (e.g., to optimize BLAS).

* see Mike Clark's Lattice 2009 plenary

Ron Babich (BU) Lattice 2010 – June 18, 2010 7

Kernel fusion

● Consider the following set of operations taken from our
BiCGstab solver:

z = z +ax + by

y = y - bw

c = |y|2

d = (v,w)

z
x
y

w

v

z

y
y

y

w

c

d

8
vector
reads

2
vector
writes

Ron Babich (BU) Lattice 2010 – June 18, 2010 8

Kernel fusion

● We can avoid memory transfers by fusing these operations
into a single compute kernel:

z = z +ax + by

y = y - bw

c = |y|2

d = (v,w)

z
x

y

w

v

z

c

d

8
vector
reads

2
vector
writes

y5

Ron Babich (BU) Lattice 2010 – June 18, 2010 9

Auto-tuned linear algebra
$ make
...
$ make tune
...

Benchmarking 16 bit precision
copyCuda : 256 threads per block, 2048 blocks per grid, Gflops/s = 0.000000, GiB/s = 127.606472
axpbyCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 62.037775, GiB/s = 125.183891
xpyCuda : 256 threads per block, 512 blocks per grid, Gflops/s = 20.661412, GiB/s = 125.075855
axpyCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 41.360739, GiB/s = 125.190617
xpayCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 41.375916, GiB/s = 125.236556
mxpyCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 20.686066, GiB/s = 125.225099
axCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 31.444969, GiB/s = 126.903442
caxpyCuda : 64 threads per block, 2048 blocks per grid, Gflops/s = 82.751603, GiB/s = 125.236209
caxpbyCuda : 128 threads per block, 2048 blocks per grid, Gflops/s = 145.006273, GiB/s = 125.401357
cxpaypbzCuda : 256 threads per block, 1024 blocks per grid, Gflops/s = 125.884968, GiB/s = 127.009472
axpyZpbxCuda : 128 threads per block, 2048 blocks per grid, Gflops/s = 101.000918, GiB/s = 127.378922
caxpbypzYmbwCuda : 64 threads per block, 4096 blocks per grid, Gflops/s = 120.062473, GiB/s = 121.134966
sumCuda : 256 threads per block, 256 blocks per grid, Gflops/s = 51.459132, GiB/s = 103.837612
normCuda : 256 threads per block, 256 blocks per grid, Gflops/s = 103.021799, GiB/s = 95.946527
reDotProductCuda : 128 threads per block, 256 blocks per grid, Gflops/s = 59.747498, GiB/s = 120.562419
axpyNormCuda : 256 threads per block, 2048 blocks per grid, Gflops/s = 74.018444, GiB/s = 112.019453
xmyNormCuda : 256 threads per block, 4096 blocks per grid, Gflops/s = 55.737687, GiB/s = 112.471159
cDotProductCuda : 128 threads per block, 256 blocks per grid, Gflops/s = 119.348463, GiB/s = 120.414577
xpaycDotzyCuda : 256 threads per block, 2048 blocks per grid, Gflops/s = 85.237100, GiB/s = 114.664674
cDotProductNormACuda : 128 threads per block, 64 blocks per grid, Gflops/s = 173.619070, GiB/s = 116.779982
cDotProductNormBCuda : 128 threads per block, 64 blocks per grid, Gflops/s = 173.822401, GiB/s = 116.916746
caxpbypzYmbwcDotProductWYNormYQuda: 256 threads per block, 512 blocks per grid, Gflops/s = 145.992303, GiB/s = 114.563884

Benchmarking 32 bit precision
copyCuda : 64 threads per block, 4096 blocks per grid, Gflops/s = 0.000000, GiB/s = 126.151752
...

Benchmarking 64 bit precision
copyCuda : 256 threads per block, 4096 blocks per grid, Gflops/s = 0.000000, GiB/s = 125.865711
...

Writing optimal parameters to blas_param.h
make[1]: Leaving directory `/home/rbabich/quda/tests'
Autotuning completed successfully. Please type 'make' to rebuild library.

$ make
...

Ron Babich (BU) Lattice 2010 – June 18, 2010 10

Mixed precision with reliable updates

● Using a mixed-precision solver incorporating “reliable
updates” (Clark et al., arXiv:0911.3191), single/half or
double/half results in only a 10-20% increase in iteration
count as compared to pure single or pure double,
respectively.

● Example single-GPU
performance: 190 Gflops
sustained in BiCGstab for
Wilson-clover with mixed
single/half precision on a
GeForce GTX 285.
(last-gen., 240 cores/GPU)

Ron Babich (BU) Lattice 2010 – June 18, 2010 11

Multi-GPU motivation

● GPU memory: For throughput jobs (e.g., computing
propagators), it suffices to use the smallest number of GPUs
that will fit the job, but often one GPU isn't enough.

● Host memory: It's generally most cost-effective to put more
than one GPU in a node. These can be used in an
embarrassingly parallel fashion (by running multiple separate
jobs), but then host memory becomes a constraint.

● Capability: We'd like to broaden the range of problems to
which GPUs are applicable (e.g., gauge generation).

Ron Babich (BU) Lattice 2010 – June 18, 2010 12

Multi-GPU strategy

● In this first pass, we divide up the temporal direction only.

● We must contend with the fact that the spinor field is stored in
6 separate arrays (necessary to ensure memory coalescing).

● With our choice of gamma basis, we need only transfer half the
spin components (e.g., upper in the backward direction).

● The 3 sub-arrays containing these components on the boundary
time-slice are copied into a contiguous buffer on the host.

● The buffer is then transferred
across the network to the
remote host, where it is copied
onto the remote GPU.

● We use CUDA streams and
cudaMemcpyAsync() to overlap
boundary transfers with interior
computation.

Sending
Device

Sending Host

Receiving Host

Receiving
Device

Network

Ron Babich (BU) Lattice 2010 – June 18, 2010 13

Multi-GPU results

● All performance numbers are for the full inverter (BiCGstab,
anisotropic clover-improved Wilson with “symmetric” even/odd
preconditioning).

● Tests were run on a 16-node cluster at Jefferson Laboratory,
interconnected by QDR Infiniband.

● Each node has 2 GeForce
GTX 285 cards (previous
generation; 240 cores/GPU).

● Details are presented in
submission to SC'10
(R.B., M. Clark, B. Joó).

Ron Babich (BU) Lattice 2010 – June 18, 2010 14

Weak scaling (243 x 32 local)

● Local volume (per GPU) is held fixed: 243 x 32

243 x 128

Ron Babich (BU) Lattice 2010 – June 18, 2010 15

Weak scaling (324 local)

● Local volume (per GPU) is held fixed: 324

323 x 256

Ron Babich (BU) Lattice 2010 – June 18, 2010 16

Strong scaling (324 x 256)

● Total volume is held fixed: 324 x 256

Ron Babich (BU) Lattice 2010 – June 18, 2010 17

Cluster comparison (324 x 256)

● What happens if we take a modern cluster and add GPUs?

Ron Babich (BU) Lattice 2010 – June 18, 2010 18

First results on Fermi

● 1 node (Dual-socket/dual-chipset)

● 4 NVIDIA GeForce GTX 480 cards

● Code has not been optimized for
Fermi, aside from setting L1 cache to
48 KB and the usual auto-tuning.

● Sustained performance in the
inverter (BiCGstab, clover-improved
Wilson, mixed single/half):

1020 Gflops

Ron Babich (BU) Lattice 2010 – June 18, 2010 19

Retrospective

2004: First 1 Tflops sustained
 for QCD (P. Vranas)

● 1 rack Blue Gene/L

● ~ $1M in 2005 or 2006

2010: 1 Tflops sustained, under
 your desk

● Dual-socket node with 4 GPUs

● ~ $5k (200x improvement
 in price/performance)

 ... for problems that fit.

(1 rack BG/L has 512 GB RAM
vs. 6 GB for four GTX 480s)

Ron Babich (BU) Lattice 2010 – June 18, 2010 20

QUDA

● QUDA library (“QCD on CUDA”) available here:

● http://lattice.bu.edu/quda

● Provides optimized CG and BiCGstab solvers for Wilson and
clover-improved Wilson, supporting mixed precision with
reliable updates.

● Release 0.3 includes support for staggered fermions,
contributed by Steve Gottlieb, Guochun Shi, and
collaborators (see next talk).

● Domain wall (contributed by Joel Giedt), twisted mass, and
multi-GPU support will be available soon.

● For efficiency, QUDA natively supports various host-side data
layouts (Chroma/QDP++, QDP/C, CPS). Others can be added
upon request.

http://lattice.bu.edu/quda

